Пропадание радиостанции в старом приемнике в доме. Сравнение и выбор радиоприемников. Технические характеристики радиоприемников

Несмотря на обилие мобильных устройств, способных ловить сигналы FM- радиостанций, воспроизводить аудио и видео, радиоприемники до сих пор пользуются популярностью. Музыкальный фон в доме, на даче, на природе или в поездке – это хорошо, а если он еще и разбавлен новостными выпусками и голосами ди-джеев, то это вообще замечательно.

А уж тем, кто остается поклонником радио и помимо музыкального наполнения любит послушать и более серьезные станции, без приемника не обойтись. Для этого стоит немного разобраться и запомнить некоторые тонкости как выбрать радиоприемник, чтобы он максимально соответствовал вашим потребностям.

Как выбрать радиоприемник

Сегодня редкий магнитофон, плеер, магнитола или сотовый телефон не оснащен встроенным радиоприемником. Но кому-то возможностей предлагаемого FM-диапазона маловато, а для кого-то гораздо важнее компактность, простота в управлении и доступная цена аппарата. Современные радиоприемники имеют качественное стереозвучание и позволяют слушать радиостанции со всего мира, непрерывно транслируя новости и музыку. Они по-прежнему остаются востребованными у дачников, автомобилистов, домохозяек и офисных работников, не имеющих времени на отслеживание новостей и замены песен в любимом плеере.

Что важно знать о том, как выбрать радиоприемник лучшего качества, не прибегая к услугам продавца консультанта. Перед тем, как отправляться в магазин за радиоприемником нужно ответить на вопрос, а где именно он будет использоваться? В городской квартире, на даче или его планируют постоянно брать в путешествия или поездки на автомобиле? Ответив на этот вопрос можно разобраться с внешним видом и функциональными возможностями аппарата. Затем стоит определить, в каком диапазоне он должен работать. После этого достаточно сравнить технические характеристики выбранных моделей, чтобы определить наиболее подходящую.

Не стоит со счетов списывать и внешний вид прибора, ведь покупается он для личного пользования. Если радиоприемник выбирается для дома, то лучше, если модель сможет вписаться в дизайн комнаты, а разнообразие корпусов и расцветок портативных моделей позволят подобрать оптимальный вариант, который с легкостью впишется в любой образ.

Какую выбрать модель радиоприемника

Все радиоприемники делятся на стационарные модели и портативные .

Стационарные радиоприемники имеют достаточно солидные габариты и вес, которые компенсируются великолепным звуком и качественным сигналом. Чаще всего такие приемники радиолюбители выбирают для использования в домашних условиях.

Портативные модели подразделяются на переносные и походные и отличаются компактными размерами, небольшим весом и имеют автономное питание. Они удобны в транспортировке и поэтому чаще всего портативные модели выбирают для путешествий или поездки за город. Миниатюрность походных моделей радиоприемников стоит чуть больших денег, но это с лихвой окупается возможностью удобно носить приборчик в небольшом рюкзачке, на шее или вообще на запястье (при помощи специального ремешка-петли). Переносные модели обычно чуть больше и мощнее, благодаря чему их чаще выбирают для дачи или загородного дома.

Качественный радиоприемник изготовлен из ударопрочного пластика. А выбирая портативную модель лучше выбирать с влагоустойчивым и водонепроницаемым корпусом, а в идеале еще и с защитным чехлом в комплекте.

Все дело в частоте

Одним из важнейших факторов при выборе радиоприемника является диапазон принимаемых им частот.

Если мобильные телефоны способны улавливать только короткие FM-волны, на которых и располагаются все популярные отечественные музыкальные радиостанции (87,5-108 МГц), то большинство недорогих радиоприемников также могут поймать сигналы среднего AM-диапазона.

Для прослушивания заграничных радиостанций необходимо выбирать радиоприемник, рассчитанный на прием как FM-диапазона, так и длинно- и средневолновых сигналов (LW и MW).

Серьезному радиослушателю нужен всеволновой приемник, способный принимать сигналы во всех вещательных диапазонах, включая длинные волны и УКВ-диапазон (65-74 МГц). Если радиоприемник по большей части будет использоваться за городом, то там поможет только УКВ (радиус приема FM-диапазона ограничен 20 км от радиоточки).

Любителям прослушки переговоров диспетчеров и пилотов стоит задуматься о всеволновом приемнике, поддерживающим работу в авиа-диапазоне, но это уже из разряда профессионального радиооборудования.

Четкий радиосигнал – как не ошибиться с моделью

Насколько качественный радиосигнал будет принимать радиоприемник, зависит от типа установленной в нем антенны, а также двух важных характеристик – чувствительности и селективности.

Антенны бывают встроенные и внешние. Выбирая стационарную модель, оснащенную встроенной внутренней антенной можно не волноваться – она обеспечит владельцу качественный и уверенный прием сигнала.

Малые размеры портативных приемников не позволяют оснастить их внутренними антеннами и за прием сигнала в них отвечают либо металлические телескопические антенны, либо проводные (к примеру, наушники в мобильном телефоне, выступающие в роли антенны). Чаще всего работают только с FM-диапазоном и не способны обеспечить уверенный прием сигнала. Выбирая между портативными моделями с телескопической или проводной антенной, предпочтение стоит отдать второму варианту, отличающемуся большей живучестью и качеством работы. Приобретая радиоприемник в магазине (через интернет этот способ не сработает) можно проверить качество антенны (лучше, если она будет в виде тонкой металлической трубочки, а не проволоки). Для этого достаточно просто включить прибор и пошевелить ею. Если все в порядке радиоэфир будет чист от шорохов и треска качающейся антенны. Работу телескопической антенны можно заметно улучшить, присоединив к ней отрезок медного изолированного провода (длиной 2-3 метра). Правда сделать это получится только, если приемник используется в помещении.

Цифровой или аналоговый – какой радиоприемник лучше выбрать

В зависимости от способа регулировки радиоприемники делятся на цифровые и аналоговые. Аналоговые модели имеют механическую шкалу настройки, и выбор нужной радиостанции производится по-старинке, посредством вращения валкодера (настроечного колеса) или ползунка. Такой приемник стоит дешевле и является отличным вариантом для тех, кто все время слушает одну и ту же волну и крайне редко меняет радиостанции. Недостатком аналоговых моделей является неточность при определении диапазона и отсутствие памяти.

А вот для любителей поплавать по радиоволнам в поисках любимых композиций или новостей более удобным и полезным будет цифровой приемник с автоматическим поиском частот. Чтобы включить нужную радиостанцию достаточно нажать кнопку и единственное, о чем придется волноваться владельцу, так это о том, что может не хватить ячеек памяти на всех (в зависимости от модели их может быть от десяти до нескольких сотен). В отличие от аналоговых моделей цифровые радиоприемники оснащаются ЖК-мониторами, на которые выводится информация о частоте выбранной радиостанции, дата, время и т.д. Кроме того, они обычно имеют набор дополнительных функций, самыми распространенными из которых являются: будильник (с возможностью программирования сигнала), таймер, поиск и индикатор заряда.

Современные цифровые радиоприемники поддерживают MP3 и могут иметь разъемы для подключения USB, SD/MMC и Aux. В зависимости от конструкции радиоприемник может не только принимать сигнал, но и производить его фильтрацию по частоте, усиливать и даже оцифровывать, переводя сигнал в аналоговый вид.

Звук

Качество звука относится к числу наиболее важных характеристик любого радиоприемника. Оно зависит от величины динамиков, а также от типа звучания приемника. Как любая другая акустическая система, радиоприемник может выдавать как простое монозвучание, так и более продвинутое стереозвучание. Оно может создаваться как посредством двух внешних динамиков, так и через наушники (стандартный 3,5-мм разъем для подключения которых есть на всех без исключения приемниках). При этом не стоит забывать, что качество звука (а также цена приемника) зависит от размера динамиков, чем они больше, тем лучше звук и дороже радиоприемник. Если простого и незатейливого монозвучания вам достаточно, то не стоит переплачивать за более дорогую стереомодель.

Питание от батареек или сети

Если при покупке стационарного радиоприемника возможность использования как питания от сети, так и от батареек не слишком актуальна, то для портативных моделей наличие автономного режима работы очень важно. Его способен обеспечить как встроенный аккумулятор, так и набор батареек. По степени надежности на первое место можно возвести стандартные алкалиновые батарейки, на второе – встроенный аккумулятор и на третье – использование солнечных батарей. Количество и размер используемых элементов питания напрямую зависит от потребляемой мощности приемника, чем он выше, тем их больше и они крупнее. В среднем, набора батареек хватает, чтобы обеспечить бесперебойную работу радиоприемника в течение 15-35 часов. При этом наиболее затратным является режим работы в FM-частотном диапазоне.

Выбирая портативный радиоприемник лучше всего отдать предпочтение моделям с двойным типом питания: способным питаться от сети (иметь разъем для подключения сетевого адаптера), и от батареек/аккумуляторов. Таким образом, находясь в доме можно экономить энергию автономных источников питания и слушать музыку, подключив радио к электросети.

Ознакомившись в статье со значимыми критериями выбора, проще сориентироваться как выбрать радиоприемник подходящей модели. Важно определить для себя, какие технические характеристики радио-приемника являются самыми предпочтительными и наиболее важными, а какие имеют второстепенное значение. Это позволит без ошибок подобрать оптимальную модель радиоприемника. Для кого-то лучшим станет раритетная (или не очень) модель с аналоговым механическим управлением. Кто-то предпочтет электронный приемник с дисплеем, множеством кнопок управления и приличным набором дополнительных функций, а для некоторых – идеальным решением станет самый простой, неубиваемый в полях дешевый китайский приемник, способный поймать всего пару-тройку близлежащих радиостанций и способный долго работать без замены батареек.

Характерные признаки и причины неисправностей приемников и радиол

Характерные признаки неисправности

Возможные причины

Блок питания сетевого приемника

Радиоприемник не включается. На-пряжение в осветительной сети есть

Проверить предохранитель, сетевой шнур с вилкой, выключатель сети, первичную обмотку силового транс-форматора

При включении радиоприемника пе-регорает предохранитель

Короткое замыкание в цепях обмо-ток силового трансформатора; неис-правен кенот,рон или селеновый вы-прямитель типа ABC; переключатель сетевого напряжения установлен в положение напряжения, меньшего, чем напряжение сети

Трансформатор питания чрезмерно нагревается даже при вынутых лам-пах. Напряжение на всех обмотках ниже номинального

Короткозамкнутые витки в обмотке силового трансформатора и пробой изоляции между обмоткой трансфор-матора и шасси

Перегорает предохранитель, силовой трансформатор, ABC быстро нагре-вается; в кенотроне наблюдается искрение и сильное голубое свечение

Пробой и замыкание одного из элект-ролитических конденсаторов сглажи-вающего фильтра, чаще всего перво-го. Короткое замыкание выпрямлен-ного напряжения на корпусе и лю-бой цепи схемы

Сильно греется силовой трансформа-тор, лампы приемника не светятся Отсутствует выпрямленное напряже-ние на выходном конденсаторе сгла-живающего фильтра

Короткое- замыкание цепи питания накала ламп приемника Выход из строя кенотрона или ABC. Обрыв дросселя или резистора филь-тра. Обрыв повышающей обмогки си-лового трансформатора

Выпрямленное анодное напряжение ниже нормы

Потери эмиссии кенотроном. Неис-правен ABC. Обрыв повышающей об-мотки силового трансформатора (в схеме двух-полупериодного выпрям-ления)

Выпрямленное анодное напряжение мало. Аноды кенотрона сильно разо-греваются (до белого свечения)

Прием на всех диапазонах сопровож-дается фоном переменного тока. То же наблюдается и при проигрывании грамзаписи

Большой ток утечки в электролитичес-ких конденсаторах, короткое замы-кание в схеме радиоприемника

Уменьшение емкости электролитичес-ких конденсаторов сглаживающего фильтра вследствие высыхания их, обрыв цепи конденсаторов фильтра, закорочена часть витков обмотки дросселя фильтра

Выходной каскад усилителя НЧ

Полное отсутствие звука. В выход-ной лампе сильно раскаляется экран-ная сетка (заметно на глаз в стек-лянных лампах)

Обрыв первичной обмотки выходного трансформатора звука

Приема нет, выходной трансформатор сильно греется. Нет напряжения на аноде выходной лампы

Отсутствуют низкие звуковые часто-ты

Замыкание первичной обмотки вы-ходного трансформатора на корпус или со вторичной обмоткой

Короткое замыкание части витков в первичной обмотке выходного транс-форматора звука

Нет звука. Вольтметр, включенный между анодом лампы и шасси, пока-зывает полное напряжение источника питания

Оборван или перегорел резистор сме-щения в цепи катода выходной лам-пы

Нет звука, напряжение на аноде вы-ходной лампы равно нулю

Пробит конденсатор, включенный между анодом выходной лампы и шасси приемника

Звук на выходе сильно искажается; на управляющей сетке выходной лампы - положительное напряжение вместо отрицательного

Пробой или большая утечка в пере-ходном конденсаторе в цепи управ-ляющей сетки выходной лампы

После непродолжительной работы ра-диоприемника искажается звук (хрип)

Неисправна выходная лампа (или одна из ламп)

При большой громкости принимаемо-го сигнала наблюдается дребезжание

Повреждена звуковая катушка или диффузор громкоговорителя. Плохая центровка звуковой катушки. Плохо закреплена одна из деталей приемника

В громкоговорителе слышен шум, на-поминающий шум моторной лодки

После включения приемника, через некоторое время прослушивается фон переменного тока

Обрыв резистора в цепи управляю-щей сетки выходной лампы

Неисправна одна из ламп в усилите-ле НЧ, чаше всего выходная лампа

Каскад предварительного усиления НЧ

Нет звука. Напряжение на аноде лампы отсутствует

Перегорание или обрыв резистора нагрузки или развязывающего фильт-ра в анодной цепи лампы

Нет звука. Чрезмерно нагревается гасящий резистор; напряжение на экранирующей сетке очень мало или равно нулю

Короткое замыкание блокировочного конденсатора в цепи экранирующей сетки

Нет звука. Напряжение на аноде лампы равно напряжению источника питания

Обрыв или перегорание резистора смещения в цепи катода лампы

Принимаемая радиостанция и проиг-рываемая грамзапись слышны слабо, напряжение на электродах лампы в норме

Потеря емкости конденсатора, вклю-ченного параллельно резистору сме-щения

Искажение и ослабление звука при приеме радиостанций и при прослу-шивании грамзаписи

Обрыв или перегорание гасящего ре-зистора в цепи экранирующей сет-ки лампы

Регулировка громкости сопровожда-ется сильным треском

Плохой контакт между ползунком и токопроводящим слоем потенциомет-ра регулировки громкости, износ или загрязнение тоководящего слоя

Детектор, схема АРУ и индикатор настройки

Приема сигнала нет. Усилитель НЧ работает нормально

Обрыв или пробой полупроводнико-вого диода. Обрыв переходного кон-денсатора или резистора нагрузки детектора. Обрыв или замыкание на шасси вторичной обмотки фильтра ПЧ

Прием мощных радиостанций идет с большой громкостью, сопровождает-ся сильными искажениями. Слабо-слышимые радиостанции принимают-ся без искажений. Усилитель НЧ работает нормально

Не работает АРУ радиоприемника. Замыкание конденсатора фильтра АРУ или обрыв в цепи АРУ

Прием радиостанций сопровождается заиканием. Усилитель НЧ работает нормально

Обрыв резистора развязывающего фильтра в цепи АРУ

Радиоприемник или радиола работа-ет нормально на всех диапазонах, но не работает оптический индикатор

Неисправна лампа оптического инди-катора

Усилитель промежуточной частоты

Приема сигнала нет. Режим работы ламп нормальный

Замыкание в конденсаторе или ка-тушке фильтра ПЧ

Приема сигналов нет. Нет напряже-ния на аноде лампы

Обрыв анодной катушки фильтра ПЧ. Пробой конденсатора или обрыв резистора развязывающего фильтра в цепи анода лампы

Прием с пониженной громкостью. Напряжение на электродах лампы нормальное

Расстроен фильтр ПЧ

Свист при настройке на радиостан-цию, особенно при настройке на сла-бослышимую. Высота свиста зависит от настройки приемника и изменяет-ся от очень высоких до низких то-нов

Плохая селективность радиоприем-ника

Расстроены ВЧ контуры или фильт-ры ПЧ

Высокочастотный блок

Прием сигналов на всех диапазонах отсутствует

Неисправна радиолампа 6А7 или 6И1П

Радиостанции слышны только на части диапазонов

Частичное (в некоторых точках) замыкание пластин конденсатора пе-ременной емкости

Приема сигналов нет на всех диапа-зонах, напряжение на аноде гетеро-дина при всех положениях переклю-чателя диапазонов равно нулю

Пробой конденсатора или обрыв ре-зистора в цепи анода гетеродина. Возможен обрыв одной из катушек обратной связи гетеродина, если они включены последовательно

Сигнал промежуточной частоты, по-данный на сигнальную сетку, прохо-дит хорошо, а сигналы, соответствую ющие по частоте проверяемым диа-пазонам, не проходят

Гетеродин не генерирует колебаний

Приемник не работает только в кон-це коротковолнового диапазона или на самом коротковолновом растяну-том поддиапазоне

Частичная потеря эмиссии лампы преобразователя частоты

Радиостанции слышны плохо, а при включении антенны непосредственно на сигнальную сетку смесителя сиг-налы слышны значительно лучше

Нет сопряжения входных и гетеро-динных контуров

Настройка на радиостанции сопро-вождается сильным треском на всех диапазонах

Плохой контакт переключателей ди-апазонов; плохой контакт в токо-съемнике ротора блока конденсато-ров переменной емкости

Переключение с диапазона на диапа-зон сопровождается сильным треском

Неисправен или загрязнен переклю-чатель диапазонов

Радиостанции не принимаются на од-ном из диапазонов приемника, на остальных слышны нормально

Обрыв какого-либо из контуров УВЧ, работающих на этом диапазо-не, не исправен переключатель диа-пазона

Принимаемые радиостанции не соот-ветствуют градуировке шкалы

Неправильно настроены контуры ге-теродина. Необходимо произвести укладку границ диапазона

Звенящий вой при громком приеме коротковолновых станций, изме-няющийся при постукивании по кор-пусу радиоприемника

Акустическое влияние громкогово-рителя на детали гетеродина. По-следовательно постукивая резиновым молоточком по деталям, проводам и лампе гетеродина, найти вибрирую-щую деталь и закрепить ее

При равномерном вращении ручки настройки стрелка движется вдоль шкалы рывками или не двигается совсем

Ослаб или оборвался тросик вернь-ерного устройства. Подтянуть тро-сик или натереть его канифолью

Периодически подключая антенну к управляющим сеткам ламп каскадов УПЧ, преобразователя и УВЧ (при исправных лампах в каскадах), в громко-говорителе приемника будут прослушиваться шорохи, щелчки. Например, если при подключении антенны к управляющей сетке лампы второго каскада УПЧ в громкоговорителе слышны шорохи или треск, то все каскады, начиная от управляющей сетки данного каскада до громкоговорителя включительно, исправны. Если при подключении антенны к управляющей сетке, лампы первого каскада УПЧ щелчков не слышно, то это указывает на неисправность первого каскада УПЧ.

Такая проверка является простой, она позволяет лишь весьма приблизи-тельно судить о качестве работы высокочастотных каскадов приемника. Более качественно проверить прохождение сигналов через эти.каскады можно с по-мощью измерительной аппаратуры. В качестве источника напряжения для проверки высокочастотных каскадов АМ-тракта служит генератор стандарт-ных сигналов типа Г4-1А или TR-0608. Этим же генератором можно проверить и настроить усилитель промежуточной частоты и дробный детектор ЧМ-тракта. Для проверки блока УКВ в качестве источника сигналов используется ге-нератор сигналов типа Г4-6.

После отыскания каскада в котором не проходит сигнал, приступают к де-тальной проверке его цепей и деталей. Следует помнить, что при ремонте особенно важно установить причину, вызвавшую порчу детали. Например, при замене сгоревшего резистора в анодно-развязывающем фильтре необходимо проверить, не пробит ли конденсатор развязки, что явилось причиной выхода из строя резистора. Если не установить причину выхода из строя резистора, при включении приемника вновь поставленный резистор также может сгореть. Более подробно порядок нахождения неисправностей приведен в табл. 3-1.

Радиовещательные ламповые приемники и радиолы имеют разнообразные схемы. Однако несмотря на это неисправности в них примерно одни и те же, потому что все они имеют общие по назначению узлы. Перечень наиболее распространенных неисправностей и их характерных признаков приведен в табл. 3-2.

3-6. Транзисторные

радиовещательные приемники

Применение транзисторов, малогабаритных деталей и печатного монтажа позволило сконструировать большое количество разнообразных малогабарит-ных радиоприемников. Они собираются преимущественно по супергетеродинной схеме, лишь некоторые миниатюрные - по схеме прямого усиления.

Принципиальные схемы двухдиапазонных приемников имеют много обще-го. Так, смеситель и гетеродин выполнены на одном транзисторе. Нагрузкой преобразователя частоты служит фильтр сосредоточенной селекции (ФСС). Усилитель промежуточной частоты - двухкаскадный: один каскад выполняет-ся как апериодический усилитель, а второй - как резонансный с нейтрализа-цией. Усилитель низкой частоты состоит обычно из трех каскадов и содержит четыре транзистора. Оконечный каскад выполняется по двухтактной схеме. Все крупные узлы приемников такие, как конденсатор переменной емкости (КПЕ), громкоговорители, переключатели диапазонов - аналогичны по кон-струкции, а некоторые из них даже однотипны.

Характерной особенностью принципиальных схем всеволновых транзистор-ных приемников является то, что в них гетеродин и смеситель собраны на отдельных транзисторах, усилитель ПЧ состоит из трех каскадов и имеется схема стабилизации напряжения источника питания.

Схемы с раздельным гетеродином и смесителем обеспечивают более вы-сокую стабильность работы преобразователя частоты. Увеличение числа кас-кадов усилителя ПЧ повышает чувствительность и селективность приемника. Схема стабилизации напряжения источника питания повышает устойчивость работы гетеродина при изменении напряжения питания, а также сохраняет высокую чувствительность приемника при разряде батарей питания. Схема собирается на одном транзисторе типа П40, П41 и кремниевом диоде типа Д101, Д220 и др. В некоторых приемниках, например «Океан», применяется более сложная схема на двух транзисторах типа МП41, МП37 и стабилитроне типа 7ГЕ2А-С. Стабилизированным напряжением питаются коллекторные и базовые цепи преобразователя частоты и гетеродина, а также цепи смещения транзисторов УПЧ.

В транзисторных приемниках монтируют внутреннюю магнитную антенну, предназначенную для приема радиовещательных станций в Диапазонах ДВ и СВ. В отдельных моделях имеется гнездо для подключения Наружной антен-. ны, что несколько повышает чувствительность приёмника. Всеволновые пЙи-емники для приема радиовещательных станций в диапазоне KB и УКВ имекйг штыревую телескопическую антенну.

В некоторых приемниках предусмотрено гнездо для подключения мало-габаритного телефона-наушника типа ТМ-4. При подключении телефона громкоговоритель автоматически отключается. Корпуса приемников изготов-ляются из ударопрочных пластмасс различного цвета, а передняя решетка, закрывающая громкоговоритель, из пластмассы или металла с отделкой под цвет серебра или золота. Для переноса некоторые приемники снабжаются кожаными футлярами с ремешком.

В высокочастотных каскадах приемников применяются транзисторы типа П401, П402, П403, П422, П423, ГТ309 (А - Е), ГТ310 (А - Е), ГТ313 (А, Б), ГТ322 (А - В), КТ315 (А - Г). Детектирование осуществляется полупроводни-ковыми диодами: в схемах АМ-детектора - германиевые точечные диоды ти-пов Д1, Д2 и Д9; в схемах ЧМ-детектора - германиевые точечные диоды ти-пов Д9, Д18 и Д20; в схеме АРУ и амплитудных ограничителей сигнала - диоды типов Д9, Д18, кремниевые ДЮЗ, Д104 и германиевые плоскостные Д7; в схемах стабилизаторов напряжения питания базовых цепей тракта усиления ПЧ и гетеродина - кремниевые точечные диоды типов Д101 и Д220, селеновые стабилитроны типов 7ГЕ1А-С, 7ГЕ2А-С и кремниевые стабилитро-ны типов Д809, Д814 и Д815; в схемах стабилизаторов блоков питания и вы-прямителей зарядных устройств - германиевые плоскостные диоды типа Д7 и кремниевые стабилитроны типов КС156А, КС168А; в схемах усилителей НЧ применяются следующие транзисторы: П13(А, Б), П14(А, Б) П15(А Б) П25(А, Б), П37(А, Б), П38А, П201, П202, П203, П213(А, Б), П216ГА Б), МП25(А, Б), МП37(А, Б), МП38А, МП39(А, Б), МП40(А, Б) МП41А. ГТ108(А - Е), ГТ109(А - Е), ГТ402(А, Б), ГТ403, ГТ404(А, Б).

Для переносных транзисторных радиоприемников немаловажное значение имеют вопросы снижения массы и габаритов. Эта задача решается примене-нием малогабаритных узлов и деталей. Однако наиболее эффективное решение достигается использованием интегральных микросхем, в которых резисторы, конденсаторы, транзисторы изготовлены в тонкой пластине монокристалли-ческого полупроводника. В транзисторных радиовещательных приемниках применяются гибридные интегральные микросхемы серии К224 и К237. Микро-схемы обладают сравнительно невысокой стоимостью, большой помехоустой-чивостью и могут работать в тяжелых температурных условиях. Более подроб-но об интегральных микросхемах изложено в седьмой главе.

На базе этих микросхем выпускаются переносные радиоприемники III класса «Урал-301», «Урал-302», «Орион-301», радиоприемники II класса «Украина-201», «Меридиан-201», «Меридиан -202», «Геолог» и др.

справочных изданий. М., Книга . 1981. 114 с.pdf Бахтурина... В.А. Аналоговые интегральные микросхемы для бытовой радиоаппаратуры . Справочник. М., Изд-во... М., 2005. html Иосиф Бродский . Нобелевская лекция. Библиотека...

  • Документ

    Справочная книга Бытовая приемно-усилительная радиоаппаратура Бытовая радиоаппаратура (Бродский М. А.) Бытовая радиоаппаратура и...

  • Главная | Математика | Физика | Химия | Биология | Медицина | Техника | Экономика | Геология

    Документ

    Элементы и детали любительских радиоприемников (Справочная книга ) (Енютин В. В.) Метрополитены (... А.-Й.К.) Бытовая приемно-усилительная радиоаппаратура . Справочник (Алексеев Ю. П.) Бытовая радиоаппаратура (Бродский М. А.) Бытовая радиоаппаратура и...

  • Прапануем рэтраспектыўны спіс літаратуры па тэхнічных навуках

    Документ

    60) М 1971 Бродский , М.А. Телевизоры цветного... 1980 Громов, Н.В. Телевизоры: Справочная книга Л 1979 Груев, И.Д. ... Лепаев, Д.А. Ремонт бытовых электроприборов, электропроигрывателей и... , В.Д. Контроль и испытания радиоаппаратуры М 1970 Мановцев, А.П. ...

  • Как найти неисправность в приёмнике?

    Наиболее верный, хотя в некоторых случаях довольно медленный, способ нахождения неисправности в приёмниках заключается в испытании приёмника по отдельным каскадам. Для этого приёмник разделяется на отдельные каскады, которые могут самостоятельно работать, и каждый такой каскад испытывается отдельно. Например, усиление низкой частоты испытывается путём присоединения ко входу усилителя низкой частоты граммофонного адаптера; точно так же при помощи адаптера испытывается и детекторная лампа. Детекторную лампу можно испытать, присоединив антенну непосредственно к контуру сетки этой лампы, минуя каскад высокой частоты. Когда есть уверенность в том, что каскады низкой частоты и каскад детекторной лампы работают исправно, тогда надо присоединить каскад высокой частоты и испытывать приёмник с этим каскадом. Если в этом случае приёмник работать не будет, то очевидно, что неисправность находится в каскаде высокой частоты. Следуя этому принципу, разделяя приёмник на отдельные работоспособные части и испытывая каждую часть в отдельности, всегда можно сравнительно легко найти неисправность.

    Как сделать простейший искатель повреждений?

    Простейший искатель повреждений (обрывов в обмотках или коротких замыканий в деталях или частях схемы) можно собрать по схеме, приведённой на рисунках. Для сборки “искателя” нужны: батарейка, лампочка от карманного фонаря и обычные телефонные трубки.

    Концы шнура с металлическими наконечниками присоединяются к концам испытываемой цепи. Если цепь не повреждена, то лампочка загорается или в телефоне будет слышен щелчок. Искатель с лампочкой применяется тогда, когда сопротивление данной цепи или детали невелико, испытание же цепей деталей с большим омическим сопротивлением следует производить только на телефон.

    Является ли неисправностью приёмника то, что он принимает гармоники местных станций?

    Гармоники (см. вопрос 216), излучаемые некоторыми передающими станциями, отличаются от обычной основной частоты только меньшей мощностью. Поэтому приёмник принимает одинаково хорошо как основную частоту станции, так и её гармоники. В современных передатчиках принимают все меры к тому, чтобы не допустить излучения гармоник или по крайней мере значительно ослабить их мощность.

    Почему в момент включения земли между проводом заземления и клеммой “земля” проскакивает искра?

    Для снижения фона переменного тока и помех, идущих из электросети, при входе в выпрямительную часть радиолюбительских приёмников ставится фильтр, состоящий из двух последовательно соединённых конденсаторов, блокирующих осветительную сеть (см. вопросы 229, 230). “Средняя точка” конденсаторов заземляется. При включении в приёмник земли происходит замыкание сети через ёмкость, вследствие чего и проскакивает искра. Никакой опасности ни для приёмника, ни для сети это явление не представляет.

    Чем вызывается “микрофонный эффект” в приёмнике?

    “Микрофонный эффект” в приёмнике появляется вследствие того, что те сотрясения, которыми сопровождается работа громкоговорителя, передаются через стенки ящика, а иногда непосредственно через воздух приёмнику. При этом некоторые детали приёмника могут начать вибрировать. Если эта вибрация приводит к изменению каких-либо электрических свойств приёмника или его отдельных деталей, то вся установка начинает “выть”. Наиболее подвержены вибрации электроды ламп, а также переменные конденсаторы, если их пластины сделаны из тонкого и упругого материала и не имеют соответствующих креплений.

    Как избавиться от микрофонного эффекта?

    Избавиться от микрофонного эффекта можно двумя способами:

    1) отнести громкоговоритель достаточно далеко от приёмника, так, чтобы сотрясения, которыми сопровождается работа говорителя, не могли воздействовать на приёмник;

    2) амортизовать те детали приёмника, вибрация которых приводит к микрофонному эффекту.


    Этими деталями, как было сказано в вопросе 408, являются лампы (обычно детекторная) и переменные конденсаторы. Вибрация ламповых электродов вызывает изменение параметров лампы; вибрация переменных конденсаторов вызывает изменение настройки приёмника. Для предупреждения возникновения микрофонного эффекта, ламповые панельки прикрепляются на резинках или пружинках к панели приёмника так, чтобы колебания шасси приёмника не передавались лампе. Обычно бывает достаточным амортизовать только детекторную лампу, в некоторых же случаях приходится амортизовать также и агрегат переменных конденсаторов приёмника. Для этого агрегат конденсаторов устанавливается на каком-либо металлическом каркасе, а каркас мягко скрепляется с панелью шасси приёмника. Для амортизации агрегатов применяется также резина.

    Почему изменяется настройка приёмника при регулировке громкости в тех случаях, когда регулятор громкости находится на входе приёмника?

    Изменение настройки вызывается двумя причинами. Одна причина, которая наблюдается при регулировке громкости помощью переменного конденсатора, вызывается тем, что, при изменении ёмкости антенного конденсатора, в известных пределах изменяется ёмкость антенной цепи, которая в схеме присоединена параллельно конденсатору настройки контура. Кроме того, при любых схемах регулировки громкости на входе приёмника, изменение настройки происходит в силу того, что всякая регулировка громкости, в конечном счёте, сводится к изменению связи первого контура приёмника с антенной, вследствие чего изменяется и та величина расстройки, которая вносится из антенны в первый контур.

    В известных пределах устранить изменение настройки первого контура при регулировке громкости можно только значительным ослаблением связи между первым контуром и антенной. Добиться минимума изменения настройки первого контура при регулировке громкости можно только правильным выбором схемы и типа связи приёмника с антенной.

    Почему приём сопровождается тресками?

    От тресков, приходящих из эфира, избавиться очень трудно. Часто радиослушатели, только что обзаведшиеся приёмником, или начинающие радиолюбители, склонны раньше всего искать причину тресков в самом приёмнике. Выяснить действительную причину тресков можно довольно простым путём - сравнить качество одновременной работы в одинаковых условиях своего приёмника с другим, заведомо хорошо работающим. Если выяснится, что трески вызваны приёмником, то это может быть следствием плохих контактов и соединений проводов между собой, неплотного контакта ножек ламп в гнёздах и т. д. Если трески слышны только при настройке приёмника и на определённых участках шкалы, то это позволяет предположить, что в пластинах переменных конденсаторов происходят замыкания.

    В чём причина “пулемётной стрельбы” при работе приёмника?

    Причинами, вызывающими в приёмнике трески, напоминающие “пулемётную стрельбу”, могут быть следующие:

    1) порча утечки сетки,

    2) плохая регулировка обратной связи,

    3) плохое качество дросселя, стоящего в анодной цепи детекторной лампы. Путём замены дросселя другим, а если в качестве дросселя используется трансформатор низкой частоты, то и путём пересоединения между собой концов обмоток, удаётся ликвидировать возникающую в этом случае “пулемётную стрельбу”.

    Что нужно изменить в схеме в случае порчи лампы высокой частоты и отсутствия запасной?

    Проще всего присоединить антенну непосредственно к детекторному контуру, но это в значительной степени понижает избирательность приёмника. Для того, чтобы избирательность приёмника не изменилась, нужно пропустить колебания высокой частоты из высокочастотного контура в детекторный. Это практически легко осуществить, соединив провод, идущий к аноду лампы высокой частоты (к штырьку на баллоне), с сеточным гнездом той же лампы через конденсатор ёмкостью в 100-150 см (см. рисунок). Громкость приёма при такой “замене” лампы конденсатором, конечно, понижается, но достаточна для приёма на громкоговоритель мощных радиостанций.


    Э лектрический ток, протекая в каком либо проводнике, порождает электромагнитное поле, распостраняющееся в окружающем его пространстве.
    Если этот ток является переменным, то электромагнитное поле способно наводить(индуцировать) Э. Д. С. в другом проводнике, находящемся на каком то удалении - осуществляется передача электрической энергии на расстояние.

    Подобный метод передачи энергии не получил пока широкого применения - весьма высоки потери.
    Но для передачи информации, он используется уже более ста лет, и весьма успешно.

    Для радиосвязи используются электромагнитные колебания, так называемого, радиочастотного диапазона направленные в пространство - радиоволны. Для наиболее эффективного излучения в пространство используют антенны различных конфигураций.

    Полуволновой вибратор.

    Простейшая антенна - полуволновой вибратор, состоит из двух отрезков провода, направленных в противоположные стороны, в одной плоскости.

    Общая длина их составляет половину длины волны, а длина отдельного отрезка - четверть. Если один из концов вибратора направлен вертикально, вместо второго может использоваться земля, или даже - общий проводник схемы передатчика.

    Например, если длина вертикальной антенны составляет - 1 метр, то для радиоволны длиной 4 метра (диапазон УКВ) она будет представлять наибольшее сопротивление. Соответственно, эффективность такой антенны будет максимальной - именно для радиоволн этой длины, как при приеме, так и при передаче.

    Говоря по правде, в диапазоне УКВ, наиболее уверенный прием должен наблюдаться, при горизонтальном расположении антенны. Это связано с тем, что передача в этом диапазоне с на самом деле, выполняется чаще всего, с помощью горизонтально расположенных полуволновых вибраторов. Поэтому, именно - полуволновой вибратор(а не четвертьволновой) будет являться более эффективной приемной антенной.


    Использование каких - либо материалов этой страницы, допускается при наличии ссылки на сайт

    «Радиоволны» передают музыку, разговоры, фотографии и данные незримо через воздух, часто более чем миллионы миль - это происходит каждый день тысячами различных способов! Даже при том, что радиоволны невидимы и абсолютно необнаружимы людьми, они полностью изменили общество. Говорим ли мы о сотовом телефоне, радионяне, беспроводном телефоне или о ком-либо из тысяч других беспроводных технологий, все они используют радиоволны для осуществления коммуникации.
    Вот всего несколько повседневных технологий, которые значительным образом зависят от радиоволн:

    • Радиопередачи AM и FM
    • Беспроводные телефоны
    • Беспроводные сети
    • Радиоуправляемые игрушки
    • Телевизионные передачи
    • Сотовые телефоны
    • GPS-приёмники
    • Любительские радио
    • Спутниковая связь
    • Полицейское радио
    • Беспроводные часы
    Данный список можно продолжать и продолжать… Даже такие вещи, как радиолокационные и микроволновые печи зависят от радиоволн. Также такие вещи, как связь и навигационные спутники не функционировали бы без радиоволн, равно как и современная авиация - самолёт сегодня зависит от десятка различных систем радиосвязи. Нынешняя тенденция к беспроводному доступу в Интернет использует радио, и это означает, что в будущем нас ждёт намного больше удобства.

    Самое смешное, что, по своей сути, радио является невероятно простой технологией. С помощью всего лишь нескольких электронных компонентов, которые стоят не более одного или двух долларов, вы можете создавать простые радиопередатчики и приёмники. История того, как что-то настолько простое стало основной технологией современного мира является захватывающей. В сегодняшней статье мы рассмотрим технологию под названием «радио», так что вы сможете полностью понять, как невидимые радиоволны делают столько много вещей, и нашу жизнь проще.

    Простейшее радио

    Радио может быть невероятно простым, и на рубеже веков эта простота сделала раннее экспериментирование возможным для примерно любого человека. Как просто получить радио? Один из примеров описывается далее:

    • Возьмите свежую 9-вольтовую батарейку и монету
    • Найдите AM-радио и настройте его на область дисков, где будет слышна статика
    • Теперь держите батарейку вблизи антенны и быстро нажмите на два контакта аккумулятора монетой (так, чтобы вы соединили их вместе на мгновение)
    • Вы услышите потрескивание в радио, которое вызвано связью и разъединением монеты
    Да, простая батарейка и не менее простая монета являются радиопередатчиком. Данная комбинация не передаёт ничего полезного (только статика), и передача не будет производиться на далёкие расстояния (всего несколько дюймов, потому что нет оптимизации для расстояния). Но если вы используете статику, чтобы вытряхнуть Азбуку Морзе, вы можете фактически сообщить о чём-то не более чем на расстояние нескольких дюймов с этим непродуманным устройством.

    Более сложное радио

    Если вы хотите получить немного более сложное радио, используйте металлический файл и два куска проволоки. Соедините ручку файла к одному контакту 9-вольтовой батарейки, затем соедините второй кусок проволоки ко второму контакту и запустите конструкцию проводя вверх и вниз по файлу. Если вы сделаете это в темноте, вы сможете увидеть, как очень маленькие 9-вольтовые искры бегут вдоль файла, поскольку наконечник проволоки производит соединение и разъединение. Держите файл около AM-радио и тогда услышите много статики.

    В первые дни радиопередатчики были названы искровыми катушками, и, кроме того, они создавали непрерывный поток искр при гораздо более высоких напряжениях (например, 20000 вольт). Высокое напряжение, соответственно, поспособствовало созданию больших искр, таких, какие вы видите в свече зажигания, например. Сегодня такой передатчик, как этот, незаконен, потому что спамит весь спектр радиочастот, но в первые дни он работал отлично и был очень распространён потому, что было не много людей, использующих радиоволны.

    Основы радио: части

    Как вы могли заметить из предыдущего раздела, создавать статику невероятно легко. Однако все радиостанции сегодня используют непрерывные волны синуса для передачи информации (аудио, видео, различные данные). Причина, по которой мы используемые непрерывные волны синуса сегодня - потому что есть много различных людей и устройств, которые в то же время хотят использовать радиоволны. Если бы у вас был какой-либо способ видеть их, то вы нашли бы, что есть буквально тысячи различных радиоволн (в форме волн синуса) вокруг вас прямо сейчас - телепередачи, радиопередачи AM и FM, полицейские и пожарные радио, спутниковые телевизионные передачи, разговоры сотовых телефонов, GPS-сигналы и так далее. Также удивительно, как много применений существует для радиоволн сегодня. Каждый отличающийся радиосигнал использует различную частоту волны синуса, и именно так они все разделены.


    У любой радио-установки есть две части: передатчик (трансмиттер) и приёмник (ресивер). Передатчик перехватывает своего рода сообщение (это может быть звук чьего-либо голоса, изображение экрана телевизора, данные для радиомодема или любое другое что-то), кодирует его на волну синуса и передаёт с радиоволнами. Приёмник же, понятное дело, принимает радиоволны и расшифровывает сообщение от волны синуса, которую оно получает. И трансмиттер и ресивер используют антенны, чтобы излучить и захватить радиосигнал.

    Основы радио: реальные примеры

    Радионяня примерно так же проста, как и получаемая технология радиосвязи. Существует передатчик, который «сидит» в комнате ребёнка и приёмник, что родители используют, чтобы слушать своё чадо. Вот некоторые из важных характеристик типичной радионяни:

    • Модуляция : Амплитудная Модуляция (Amplitude Modulation, AM)
    • Диапазон частот : 49 МГц
    • Количество частот : 1 или 2
    • : 0.25 Вт



    Типичная радионяня с передатчиком слева и приёмником справа. Передатчик находится, непосредственно, в комнате ребёнка и служит некой мини-радиостанцией. Родители же берут с собой приёмник и с помощью него слушают деяния ребёнка. Дальность связи ограничивается до 200 футов (61 метр)

    Не волнуйтесь, если такие термины, как «модуляция» и «частота» не имеют смысла для вас сейчас - мы доберёмся до них через некоторое время и я объясню, что они значат.



    Мобильный телефон содержит в себе как приёмник, так и передатчик, и оба работают одновременно на разных частотах. Сотовый телефон взаимодействует с сотовой вышкой и способен передавать сигналы на расстояние 2 или 3 мили (3-5 километров)

    Сотовый телефон также радио и является гораздо более сложным устройством. Сотовый телефон содержит как передатчик, так и приёмник, и вы можете использовать одновременно их оба - так вы будете использовать сотни различных частот и сможете автоматически переключаться между ними. Вот некоторые из важных характеристик типичного аналогового сотового телефона:

    • Модуляция : Частотная Модуляция (Frequency Modulation, FM)
    • Диапазон частот : 800 МГц
    • Количество частот : 1.664
    • Мощность передатчика (трансмиттера) : 3 Вт

    Простые передатчики (трансмиттеры)

    Вы можете получить представление о том, как работает радиопередатчик, начиная с батарейки и куска проволоки. Как известно, батарея посылает электричество (поток электронов) через провод при подключении его между двумя контактами. Движущиеся электроны создают магнитное поле, окружающее провод, и поле достаточно сильное, чтобы повлиять на компас.

    Давайте предположим, что вы берёте ещё один провод и помещаете его параллельно провода аккумулятора на несколько дюймов (5 сантиметров). При подключении очень чувствительного вольтметра к проводу произойдёт следующее: каждый раз, когда вы подключаете или отключаете первый провод от батареи, вы ощутите очень маленькое напряжение и ток во втором проводе; любое изменение магнитного поля может вызвать электрическое поле в проводнике - это основной принцип, лежащий в любом электрическом генераторе. Итак:

    • Батарея создаёт поток электронов в первом проводе
    • Подвижные электроны создают магнитное поле вокруг провода
    • Магнитное поле простирается до второго провода
    • Электроны начинают течь во втором проводе каждый раз, когда магнитное поле в первом проводе изменяется

    Одна важная вещь, заметьте, состоит в том, что поток электронов во втором проводе только тогда, когда вы соединяете или разъединяете батарею. Магнитное поле не вызывает электроны течь в проводе, если магнитное поле не меняется. Подключение и отключение батарейки меняет магнитное поле (подключение аккумулятора к проводу создаёт магнитное поле, в то время как отключение разрушает его). Таким образом протекает поток электронов во втором проводе в те два момента.

    Передача информации

    Если у вас есть волна синуса и передатчик, который передаёт волну синуса в космос с антенной, у вас есть радиостанция. Единственная проблема заключается в том, что волна синуса не содержит никакой информации. Вы должны смодулировать волну в некотором роде, чтобы закодировать информацию на ней. Есть три распространённых способа смодулировать волну синуса:

    Импульсная Модуляция - в PM вы просто включаете волну синуса и отключаете. Это простой способ отправить код Азбуки Морзе. PM не настолько распространана, но один хороший пример её - система радиосвязи, которая посылает сигналы в радиоуправляемые часы в Соединённых Штатах Америки. Один передатчик PM в состоянии покрыть все Соединённые Штаты Америки!

    Амплитудная Модуляция - обе радиостанции AM и часть телевизионного сигнала сигнализируют амплитудную модуляцию для кодирования информации. В амплитудной модуляции амплитуда волны синуса (её напряжение от пика к пику) изменяется. Так, например, волна синуса, произведённая голосом человека, накладывается на волну синуса передатчика, чтобы изменить её амплитуду.

    Частотная Модуляция - радионстанции FM и сотни других беспроводных технологий (включая звуковую часть телевизионного сигнала, беспроводные телефоны, сотовые телефоны и так далее) используют частотную модуляцию. Преимущество FM заключается в том, что она в значительной степени невосприимчива к статике. В FM изменение частоты волны синуса передатчика очень слабо основывается на информационном сигнале. После того, как вы смодулировали волну синуса с информацией, вы можете передать её!

    Частота
    Одна особенность волны синуса - своя частота. Частота волны синуса - количество раз, сколько колеблется она вверх и вниз в секунду. Когда вы слушаете радиопередачу AM, ваше радио настраивается на волну синуса с частотой приблизительно 1000000 циклов в секунду (циклы в секунду известны также как герцы). Например, 680 на дайле AM - это 680000 циклов в секунду. Радиосигналы FM работают в диапазоне 100000000 герц. Таким образом, 101.5 в дайле FM будет значится как 101500000 циклов в секунду.

    Приём сигнала AM

    Вот пример реального мира. При настройке вашего автомобильного AM-радио на станции, например, 680 на циферблате AM - значит, что волна синуса передатчика передаёт 680000 герц (волна синуса повторяет 680000 раз в секунду). Голос диджеев модулируется на этой несущей волне путём изменения амплитуды волны синуса передатчика. Усилитель усиливает сигнал на что-то вроде 50000 Вт для большой AM-станции. Тогда антенна передаёт радиоволны в космос.

    Так как же AM-радио вашего автомобиля - приёмник - получает 680000-герцевый сигнал, который послан передатчиком и извлекает информацию (голос диджея) из него? Далее я перечислю вам шаги данного процесса:

    • Если вы не сидите прямо рядом с передатчиком, ваш радиоприёмник нуждается в антенне, чтобы помочь подобрать радиоволны передатчика из воздуха. AM-антенна представляет собой просто провод или металлическую палку, которая увеличивает количество металла, с которым могут взаимодействовать волны передатчика.
    • Также ваш радиоприёмник нуждается в тюнере. Антенна будет получать тысячи волн синуса. Работа тюнера заключается в отделении одной волны синуса от тысяч различных радиосигналов, которые получает антенна. В этом случае приёмник настроен на получение сигнала 680000 герц. Тюнеры работают используя принцип, называющийся резонанс, то есть тюнеры резонируют и усиливают одну особую частоту, в то время как все другие частоты игнорируются в воздухе. Резонатор, к слову, легко создать с помощью конденсатора и катушки индуктивности.
    • Тюнер заставляет радио получать всего одну частоту волны синуса (в нашем случае 680000 герц). Теперь радио должно извлечь голос диджея из этой волны синуса - это делается посредством одной из частей радио под названием детектор или демодулятор. В случае с AM-радио, детектор выполнен так, что имеет электронные компоненты, называемые диодами. Диод позволяет току течь в одном направлении и только через него.
    • Радио затем усиливает обрезанный сигнал и посылает его спикерам (или наушникам). Усилитель выполнен из одного или нескольких транзисторов (чем больше транзисторов, тем больше усиление и поэтому большая мощность приходится на динамики).
    То, что вы слышите исходящее из динамиков - голос диджеев (привет, кэп). В FM-радио детектор отличается, но всё остальное то же самое. В FM-радио детектор изменяет частоту в звуке, но антенна, тюнер и усилитель - в основном то же самое.

    Основы антенны

    Вы, наверное, заметили, что почти каждое радио, будь то мобильный телефон, радио в автомобиле и многое другое, имеет антенну. Антенны бывают всех форм и размеров, в зависимости от частоты, которую антенна пытается получать. Радиопередатчики также используют чрезвычайно высокие башни-антенны для передачи их сигналов.

    Идея антенны в радиопередатчике подразумевает под собой запуск радиоволны в космос. В приёмнике идея состоит в том, чтобы взять как можно больше данных передатчика и поставлять её тюнеру. Для спутников, которые находятся от нас в миллионах миль, NASA использует огромные спутниковые антенны до 200 футов (60 метров) в диаметре - только представьте себе подобную картинку маслом.


    Размер оптимальной радиоантенны связан с частотой сигнала, который антенна пытается передавать или принимать. Причина этой взаимосвязи имеет отношение к скорости света, в результате чего на далёкие расстояния могут отправляться электроны. Скорость света составляет 186000 миль в секунду (300000 километров в секунду).

    Антенны: реальные примеры


    Давайте предположим, что вы пытаетесь построить радиовышку для радиостанции 680 AM. Она передаёт волну синуса с частотой 680000 герц. В одном цикле волны синуса передатчик будет перемещать электроны в антенну в одном направлении, переключиться и задержит их, снова переключиться и выставит их, а потом переключиться ещё раз и вернёт их обратно. Другими словами, электроны будут изменять направление четыре раза в течение одного цикла волны синуса. Если передатчик работает на 680000 герц, это означает, что каждый цикл завершается в (1/680000) 0.00000147 секунды. Одна четверть этого составляет 0.0000003675 секунды. Со скоростью света электроны могут пролететь 0.0684 мили (0.11 километра) через 0.0000003675 секунды. Это значит, что оптимальный размер антенны для передатчика на 680000 герц равен 361 футу (110 метрам). Таким образом, радиостанции AM нуждаются в очень высоких башнях. Для мобильного телефона, работающего на частоте 900000000 (900 МГц), с другой стороны, оптимальный размер антенны составляет около 8.3 сантиметра или 3 дюймов - именно поэтому мобильные телефоны могут иметь такие короткие антенны.

    Вы могли бы задаться вопросом, почему когда радиопередатчик передаёт что-то, радиоволны хотят размножиться через пространство далеко от антенны со скоростью света. Почему радиоволны могут преодолевать миллионы миль? Оказывается, что в пространстве магнитное поле, создаваемое антенной, индуцирует электрическое поле в пространстве. Это электрическое поле, в свою очередь, вызывает ещё магнитное поле в пространстве, которое индуцирует другое магнитное поле, которое индуцирует другое магнитное поле, и так далее. Эти электрические и магнитные поля (электромагнитные поля) вызывают друг друга в пространстве со скоростью света, путешествуя таким образом далеко от антенны. Вот и всё на сегодня. Надеюсь, что статья была очень интересной, познавательной, полезной и вы узнали много нового о повседневной технологии.