Мощный стробоскоп своими руками. Как собрать стробоскоп для установки зажигания своими руками? Как сделать стробоскопы своими руками для дома

Не секрет, что многие проблемы, которые порой возникают с автомобилем, под силу исправить даже начинающему автовладельцу. Несмотря на кажущуюся сложность механизма, порой можно избежать очередного обращения в сервисный центр или покупки очередного агрегата для замены. Каждый желающий сэкономить на приобретении не слишком качественного девайса может самостоятельно смастерить, например, стробоскоп, который предназначен для установки зажигания. Многих новичков может оттолкнуть одно название, которое кажется слишком сложным и вычурным, однако не стоит торопиться с выводами. Чтобы знать, как сделать стробоскоп для установки зажигания без покупки идентичного заводского устройства, следует ознакомиться с несколькими предложенными способами и запастись всеми необходимыми материалами . Для тех, кто не уверен в своих силах, достаточно будет хотя бы один раз зайти в автомагазин и узнать о стоимости и качестве производственного стробоскопа.

На деле практически большинство автовладельцев для создания этого хитрого прибора прибегают к использованию обычных газоразрядных ламп. Правда, такие устройства не могут отличиться длительным функционированием, тем более что однажды вышедшая из строя лампа по своей стоимости не слишком сильно отличается от той суммы, за которую можно приобрести новый стробоскоп. Всё это вкупе может натолкнуть автолюбителя на создание собственного приспособления. Рассмотрим самые простые и доступные методы создания стробоскопа.

«Преимущества» заводских устройств

Прежде чем остановиться на приобретении стандартного заводского стробоскопа, необходимо подетально изучить все его особенности и узнать о принципе работы. Итак, изначально разберёмся с областью применения настоящего устройства. Приспособление, которое называется стробоскопом, позволяет владельцу авто без труда отрегулировать зажигание. Имея под рукой этот прибор, можно значительно ускорить весь . Оснащённый лампой, агрегат подаёт сигналы о наличии искры, ввиду чего можно быстро и правильно установить необходимый угол опережения зажигания.

Нельзя не отметить эффективность и точность работоспособных заводских приборов, которые способны справиться с решением этой задачи всего за несколько минут. Однако, несмотря на такие преимущества, почему-то подавляющее большинство автолюбителей старается создать такой агрегат своими руками, не спеша покупать производственный вариант. Вероятнее всего, этот аспект обусловлен довольно высокой стоимостью стробоскопов. Заводские модели в подавляющем большинстве комплектуются дорогими газоразрядными лампами, последующая замена которых по цене становится равной приобретению нового устройства. Имеющиеся в продаже заводские аналоги продаются в ценовом диапазоне от 1000 до 6000 рублей (простой Multitronics обойдётся покупателю в 1000 рублей, Astro L5 в 1300, Focus F1 в 1700, а Focus F10 в 5600 рублей).

При желании и возникающей необходимости такой прибор можно создать самостоятельно, достаточно лишь найти все материалы, которые включают самые простые и обыденные вещи, которые есть в гараже каждого. Простой автомобильный стробоскоп можно сделать из фонарика, светодиодов и даже простой лазерной указки. Несмотря на практически полную бесценность, сделанный своими руками прибор сможет прослужить не менее долговечно и надёжно, доказывая эффективность службы на практике.

Принцип создания прибора

Стробоскоп для настройки зажигания особенно необходим тем, кто имеет автомобиль . Обусловлено это особенностями настройки, так как правильно отрегулировать угол опережения зажигания, который присутствует на контактных трамблёрах и всех бесконтактных распределителях, даже в уме представить сложно, не говоря уже о действительности. Обойтись в такой ситуации без стробоскопа попросту не выйдет. Тем более что, воспользовавшись услугами этого точнейшего прибора, можно всего за 7–8 минут с крайней точностью настроить зажигание. Этому показателю, как и другим важным элементам автомобиля, необходимо уделять должное внимание, так как без него невозможно нормальное функционирование любого транспортного средства. Потребность в таком изделии, высокая стоимость заводского варианта в магазине и наличие необходимых деталей попросту подталкивают человека к созданию собственного стробоскопа.

Перечень необходимых деталей

До того как отправляться в магазин за покупкой всех нижеописанных деталей, стоит внимательно изучить все материалы и детали, присутствующие в гараже, вполне вероятен тот факт, что большинство из них давно без особой нужды пылятся на полках. Если найти для изготовления приспособления большинство элементов, хранящихся в числе бросовых материалов, конечная стоимость готового и прекрасно функционирующего стробоскопа не превысит 100 рублей, что позволит сэкономить денежные средства на другие нужды. Первое, что понадобится - это простой дешёвый фонарик китайского производства. Будет лучше, если он окажется светодиодным. В том случае, если имеющаяся в наличии модель окажется ламповой, необходимо будет дополнительно купить или изъять из старого фонаря все требуемые светодиоды.

Кроме корпуса, понадобится электронная начинка, для создания которой нужны следующие элементы:

  • транзистор типа КТ315, который наверняка хранится в выброшенном радиоприёмнике советского образца;
  • тиристор КУ112А, его можно обнаружить в блоке питания старого телевизора;
  • конденсатор, рассчитанный на напряжение 16 В;
  • диод, обладающий низкими частотами;
  • реле под напряжение 12 В, однако следует выбрать маленькую по размеру деталь, которая сможет поместиться в корпусе фонарика;
  • несколько «крокодилов»;
  • моток проводов, причём 0,5 метра из которых должны быть экранированными;
  • небольшой кусок медного провода.

Несмотря на большое многообразие схем, созданных для правильной последовательной сборки устройства, новоиспечённому создателю стробоскопа в любом случае понадобится такой . Кроме наличия всех описанных деталей, необходимо вооружиться паяльником, будет лучше, если автовладелец будет иметь хотя бы минимальные навыки его использования.

Чтобы осуществить сборку этого прибора, нужно последовательно соединить все части имеющимися проводами и надёжно припаять. Через заднее отверстие, имеющееся в фонаре, придётся пропустить все необходимые провода, которые обеспечат бесперебойное питание стробоскопу. Если в выбранной модели фонарика отсутствует боковое отверстие, автовладелец должен сделать его своими руками. Нужно это для того, чтобы вывести экранированный провод, на концах которого к центральной жиле будет припаяна медная проволока. Именно это элемент созданного прибора будет специальным сигнализирующим датчиком.

Принцип функционирования прибора

Итак, после создания такого важного устройства, как самодельный автомобильный стробоскоп, следует разобраться с принципом его работы, чтобы в дальнейшем беспрепятственно совершать правильную настройку угла зажигания. Конденсатор, на который подаётся электрический ток, заряжается посредством резистора. По достижению заряда необходимого уровня ток подаётся резистором на открывшийся транзистор. Именно в это время начинает работать реле, которое предназначено для создания цепи, включающей тиристор, диоды и конденсатор. Весь агрегат является специализированным делителем, через который заряд проходит на главный контакт тиристора. Открывшийся управляющий элемент влечёт разрядку конденсатора, которая выражается посредством загорающихся диодов. Вспышка света, которая возникает в фонарике, гаснет. Главный выход транзистора посредством тиристора и резистора соединяется с центральным проводом, в результате действия которого закрывается транзистор и выключается реле.

Стробоскоп для настройки зажигания сигнализирует длительным свечением диодов, возникает это из-за разрыва контакта с задержкой. Спустя некоторое время контакт обесточивается и прерывается. Самодельный прибор опять обретает положение бездействия, вспыхивая в момент возникновения следующего импульса. Чтобы добиться более яркого свечения светодиодов в фонаре, можно воспользоваться конденсатором, обладающим большей ёмкостью.

Создание стробоскопа на микросхеме

Наиболее простой стробоскоп для установки зажигания - это создание прибора, который основан на микросхеме DD1, представляющей собой одновибратор. К этой микросхеме подключается несколько диодов, которые способствуют её защите от возможных ошибок, возникающих в момент подключения. До того как на микросхему попадает очередной импульс, она находится в обычном спокойном состоянии. Система оснащена двумя различными выводами, причём первый обладает низким уровнем, ему противостоит высокий инверсный вывод. Соответственно подключаемый конденсатор соединяется плюсом с инверсным выводом, благодаря чему происходит его зарядка. Проходящий по всей микросхеме импульс «цепляет» триггер, за которым подключается в работу заряжённый конденсатор. Весь процесс проходит непосредственно через резистор. Впаянная микросхема DD1 отвечает поступившему на неё электрическому току, отображая энергию посредством свечения светодиодов.

Заключение

Если рассматривать техническую сторону функционирования стробоскопа, сделанного своими руками, стоит отметить его эффективность, которая ничем не уступает работе заводского прибора. подключается к силовому агрегату и зажиганию. Человек, который сам собрал такой агрегат, должен помнить, что один из «крокодилов» цепляется за провод, который ведёт к первому цилиндру. Чтобы обеспечить правильную и бесперебойную работу прибора, необходимо заранее изучить принцип его работы и верно собрать все детали. В тот момент, когда двигатель идёт сквозь точку, в которой возникает искра, автомобильный стробоскоп, получая очередной электрический импульс, отзывается вспышкой светодиодов. Используя такой момент, автолюбитель должен правильно настроить зажигание.

Для точной установки зажигания на двигателе необходимо использовать специальные приборы – стробоскопы. Их можно приобрести в автомагазинах или изготовить своими руками. Во втором случае вы сэкономите приличную сумму и сделаете наиболее подходящее устройство для вашей модели авто.

Особенности заводских стробоскопов и принцип их работы

Точно отрегулировать зажигание без использования стробоскопа довольно сложно. Такой прибор существенно ускоряет процесс настройки, лампа сигнализирует о появлении искры, что позволяет правильно установить угол опережения зажигания. Несмотря на то, что заводские приборы работают эффективно и точно, многие автолюбители не спешат их покупать. Главным сдерживающим фактором можно назвать высокую цену стробоскопов. В большинстве моделей используется дорогостоящая газоразрядная лампа, её замена приравнивается к покупке нового прибора.

Само устройство можно сделать своими руками, используя простые и доступные материалы. Существует несколько хороших схем изготовления, которые помогут сэкономить на покупке заводских аналогов. Для примера, можно ознакомиться с ценами на самые популярные стробоскопы, которые есть в продаже:

  • Multitronics C2 - 900-1000 руб.
  • AstroL5 - 1300 руб.
  • Focus F1 - 1700 руб.
  • Focus F10 - 5600 руб.

Самодельные приборы делаются из фонариков, светодиодов или лазерной указки. При низкой себестоимости (около 500 рублей) прибор будет работать не менее надёжно и эффективно.

Инструкция по изготовлению прибора для установки зажигания

Простой способ

В сети есть много разных схем, практически все из них легко собираются и не требуют больших затрат на материалы. Рассмотрим одну из наиболее популярных схем создания стробоскопа в домашних условиях. Из деталей нам понадобится:

  • транзистор КТ315;
  • тиристор КУ112А, резисторы на 0,125 Вт;
  • любой фонарик на диодах (диодов должно 6 или больше);
  • конденсаторы C1;
  • низкочастотный диод V2;
  • реле с индексом RWH-SH-112D;
  • шнур питания длиною 1 метр;
  • специальные зажимы;
  • медный провод около 10 см.

Все детали можно приобрести на радиорынке или в специализированном магазине. В качестве корпуса для прибора можно использовать старый фонарик или вспышку от фотоаппарата.

Схема сборки автомобильного стробоскопа в корпусе от старого фонарика


Использовать такое устройство можно не только для установки зажигания. Им можно проверить свечу, настроить работу регулятора.

Самодельная приблуда с использованием таймера

Стробоскоп на основе таймерных устройств имеет более сложную схему. Его главное преимущество в стабильных световых импульсах, которые не зависят от напряжения батареи. Прибор также может работать в режиме тахометра, для этого необходимо просто изменить положение регулятора.

Таймерные стробоскопы также можно использовать в качестве тахометра

Совет: В схеме лучше использовать диоды из серии КД521. Если вы не нашли таймера отечественного производства, можно взять зарубежный аналог NE555.

Схема изготовления прибора на светодиодах

В основе такого устройства лежит микросхема 155АГ1, она запускается импульсами с отрицательной полярностью. В схеме используются сопротивления R1, R2, R3, которые ограничивают амплитуду входного сигнала. Требуемая длительность импульсов устанавливается ёмкостью С4 и резистором R6. При стандартных настройках это 2 мс. В качестве источника питания будет использоваться аккумуляторная батарея автомобиля.

Светодиодные стробоскопы имеют высокую надежность и могут использоваться даже при ярком дневном освещении

Видео: как сделать стробоскоп своими руками

Как правильно настроить самоделку

Чтобы проверить устройство на практике и установить угол опережения зажигания, делаем следующее:

  1. Прогреваем двигатель и оставляем его работать на холостом ходу.
  2. Подключаем самодельный стробоскоп к источнику питания.
  3. Наматываем медный датчик на жилу первого цилиндра.
  4. Направляем источник света на специальную метку, которая нанесена на корпус.
  5. Находим неподвижную точку на шкиве маховика.
  6. Чтобы две точки сошлись, необходимо вращать корпус зажигания и после зафиксировать его в определённом положении.

На практике самодельные стробоскопы ничем не уступают заводским. Главное, правильно собрать схему и проверить работу устройства. Изготовленные стробоскопы в домашних условиях обойдутся совсем недорого и могут быть легко отремонтированы при необходимости.

Светодиодный стробоскоп для установки зажигания позволяет быстро и с высокой точностью выставлять оптимальный угол опережения зажигания (УОЗ) в автомобиле. Данный параметр играет важную роль в корректной работе двигателя. Небольшое смещение в момент зажигания приводит к потере мощности, вследствие возросшего расхода топлива и перегрева двигателя.

Несмотря на большой ассортимент промышленно выпускаемых приборов для проверки и установки УОЗ, актуальность создания стробоскопа своими руками не потеряла смысл и в наши дни. Представленная схема самодельного стробоскопа для автомобиля не требует наладки после сборки и изготавливается из доступных деталей.

Принципиальная схема стробоскопа

Схема разработана и представлена в девятом издании журнала «Радио» в далеком 2000 году. Однако, благодаря своей простоте и надежности, остается актуальной и в наши дни.

В принципиальной электрической схеме стробоскопа для авто можно условно выделить 4 части:

  1. Цепь питания, состоящая из выключателя SA1, диода VD1 и конденсатора С2. VD1 защищает элементы схемы от ошибочной смены полярности. С2 блокирует частотные помехи, предотвращая сбои в работе триггера. Для подачи и отключения питания используется выключатель SA1, для этого подойдет любой компактный выключатель или тумблер.
  2. Входная цепь, которая состоит из датчика, конденсатора С1 и резисторов R1, R2. Функцию датчика выполняет зажим «крокодил», который закрепляется на высоковольтном проводе первого цилиндра. Элементы С1, R1, R2 представляют собой простейшую дифференцирующую цепь.
  3. Микросхема триггера, собранная по схеме двух однотипных одновибраторов, которые формируют на выходе импульсы заданной частоты. Частотозадающими элементами являются резисторы R3, R4 и конденсаторы С3, С4.
  4. Выходной каскад, собранный на транзисторах VT1-VT3 и резисторах R5-R9. Транзисторы усиливают выходной ток триггера, что отражается в виде ярких вспышек светодиодов. R5 задаёт ток базы первого транзистора, а R9 – исключает сбои в работе мощного VT3. R6-R8 ограничивают ток нагрузки, протекающий через светодиоды.

Принцип работы

Схема стробоскопа питается от автомобильного аккумулятора. В момент замыкания выключателя SA1, триггер DD1 переходит в исходное состояние. При этом на инверсных выходах (2, 12) появляется высокий потенциал, а на прямых (1, 13) – низкий потенциал. Конденсаторы С3, С4 заряжены через соответствующие резисторы.

Импульс с датчика, пройдя через дифференцирующую цепь, поступает на тактовый вход первого одновибратора DD1.1, что приводит к его переключению. Начинается перезаряд С3, который через 15 мс заканчивается очередным переключением триггера. Таким образом, одновибратор реагирует на импульсы с датчика, формируя на выходе (1) прямоугольные импульсы. Длительность выходных импульсов с DD1.1 определяется номиналами R3 и С3.

Второй одновибратор DD1.2 работает аналогично первому, уменьшая длительность импульсов на выходе (13) в 10 раз (примерно до 1,5 мс). Нагрузкой для DD1.2 служит усилительный каскад из транзисторов, которые открываются на время импульса. Импульсный ток через светодиоды ограничен исключительно резисторами R6-R8 и в данном случае достигает величины 0,8 А.

Не стоит пугаться столь большого значения тока. Во-первых, его импульс не превышает 1 мс, со скважностью в рабочем режиме не менее 15. Во-вторых, современные светодиоды обладают гораздо лучшими техническими характеристиками в сравнении с их предшественниками из 2000 года, когда эта схема впервые получила практическое применение. Тогда нужно было поискать светодиоды с силой света в 2000 мкд. Сейчас белый LED (от англ. Light-emitting diode) типа C512A-5 мм от компании с углом рассеивания 25° способен выдать 18000 мкд при постоянном токе в 20 мА. Поэтому использование сверхъярких светодиодов позволит значительно снизить ток нагрузки путём увеличения сопротивления R6-R8. В-третьих, время пользования стробоскопом обычно не превышает 5-10 минут, что не вызывает перегрев кристаллов излучающих диодов.

Печатная плата и детали сборки

Самодельный стробоскоп для установки зажигания можно собрать как на недорогих отечественных радиоэлементах, так и на более прецизионных импортных элементах. Ниже представлена плата с применением отечественных компонентов для штыревого монтажа.

Плата в файле Sprint Layout 6.0: plata.lay6

Диод VD1 – КД2999В или любой другой с малым падением прямого напряжения. Конденсатор С1 должен быть высоковольтным с емкостью в 47 пФ и напряжением 400 В. Конденсаторы С2-С4 неполярные серии КМ-5, К73-9 на 0,068 мкФ 16 В. Все резисторы, кроме R4, типа МЛТ или планарные с номиналами, указанными на схеме. Подстроечный резистор R4 типа СП-3 или СП-5 на 33 кОм.

Триггер ТМ2 лучше использовать 561 серии, которая отличается высокой помехоустойчивостью и надёжностью. Но можно заменить его микросхемой 176 и 564 серии, учитывая их распиновку. Транзисторы VT1-VT2 подойдут КТ315 Б, В, Г или КТ3102 с большим коэффициентом усиления. Выходной транзистор – КТ815, КТ817 с любой буквенной приставкой. Светодиоды HL1-HL9 лучше взять сверхъяркие с малым углом рассеивания. Их располагают на отдельной плате по три в ряд. При отсутствии каких-либо деталей схемы их можно заменить более современными аналогами, немного усовершенствовав плату.

Готовую плату управления стробоскопа и плату со светодиодами удобно разместить в корпусе переносного фонарика. При этом необходимо предусмотреть отверстие в корпусе под регулятор R4, а в качестве SA1 можно использовать штатный выключатель.

Настройка

В схеме установлен подстроечный резистор R4, регулировкой которого можно добиться нужного визуального эффекта. Вращая ручку регулятора можно наблюдать, что уменьшение импульса тока ведёт к недостатку освещенности меток, а увеличение – к размытости. Поэтому во время первого запуска стробоскопа необходимо подобрать оптимальную длительность вспышек.

Длина экранированного провода от печатной платы к датчику не должна превышать 0,5 м. В качестве датчика подойдет 0,1 м медного проводника, припаянного к центральной жиле экранированного провода. В момент подключения его наматывают на изоляцию высоковольтного провода первого цилиндра автомобиля, делая 3 витка. Для повышения помехоустойчивости намотку производит максимально близко к свече. Вместо медного проводника можно взять зажим типа «крокодил», который также следует припаять к центральной жиле, а его зубья слегка загнуть внутрь, чтобы не повредить изоляцию.

Установка УОЗ стробоскопом

Прежде чем рассмотреть работу автомобильного стробоскопа, нужно понять суть стробоскопического эффекта. Если движущийся в темноте объект на мгновение осветить вспышкой, то он будет казаться застывшим в месте, где произошла вспышка. Если на вращающееся колесо нанести яркую метку и освещать его яркими вспышками, совпадающими по частоте с частотой вращения колеса, то в момент вспышек можно зрительно фиксировать местоположение метки.

Перед регулировкой момента зажигания автомобиля наносят две метки: подвижную на коленчатом валу (маховике) и стационарную – на корпусе двигателя. Затем присоединяют датчик, подают питание на стробоскоп и включают двигатель в режим холостого хода. Если во время вспышек метки совпадают, то УОЗ выставлен оптимально. В противном случае следует произвести корректировку до полного их совпадения.

Представленный стробоскоп для установки зажигания, собранный своими руками, позволит за несколько минут отладить систему зажигания автомобиля. В результате корректировки вырастет КПД двигателя и увеличится срок его службы.

Читайте так же

– это электронный светотехнический прибор, позволяющий по метке на валу двигателя и шкале на его корпусе визуально определить и отрегулировать угол опережения зажигания (УОЗ) в двигателях внутреннего сгорания автомобиля. Принцип работы стробоскопа основан на стробоскопическом эффекте (зрительной иллюзии) возникающем, когда частота вспышек стробоскопа совпадает или близка частоте вращения коленчатого вала двигателя автомобиля.

Момент зажигания горючей смеси в автомобильном двигателе внутреннего сгорания существенно влияет на максимальную мощность, КПД, температурный режим и ресурс двигателя. Поэтому крайне важно, чтобы воспламенение горючей смеси происходило в нужный момент времени. Обычно воспламеняют смесь за несколько градусов до прихода поршня в верхнюю мертвую точку, и этот угол называется Угол опережения зажигания .

При увеличении оборотов двигателя угол опережения зажигания должен увеличиваться по заданной кривой, поэтому он выставляется в режиме работы двигателя на холостом ходу и контролируется во всем диапазоне изменения его оборотов в минуту, вплоть до 5000. Для контроля и установки УЗО и служит Автомобильный стробоскоп.

Радиолюбителям разработано много схем автомобильных стробоскопов, начиная от самых простейших на неоновых лампочках, и заканчивая современными схемами, с использованием микроконтроллеров, полевых транзисторов и сверх ярких светодиодов. Но такая комплектация дорогая, да и редко кто имеет программатор, чтобы программировать контроллеры. Более пятнадцати лет назад я собрал свой вариант схемы стробоскопа, который и представляю Вашему вниманию.

Электрическая схема стробоскопа

Отличительная особенность схемы представленного стробоскопа, это простейшая комплектация и возможность контроля угла опережения зажигания в автомобильном двигателе вплоть до 5000 оборотов в минуту.


Структурно схема состоит из нескольких функциональных узлов. Преобразователя напряжения, импульсной световой лампы, блока поджога и индуктивного датчика момента искрообразования.

Принцип работы

Преобразователь служит для преобразования напряжения аккумулятора 12 В в необходимое для питания импульсной световой лампы ИСШ-15 напряжение 300 В. Выполнен преобразователь на микросхеме TL494, транзисторах VT1,2 и трансформатора Т1. Блок поджога световой лампы состоит из повышающего трансформатора Т2, конденсатора С6 и тиристора VD8. Индуктивный датчика момента искрообразования состоит из катушки индуктивности L1 и транзистора VT3.

Благодаря применению в преобразователе ШИМ-контроллера TL494 (отечественный аналог 11114ЕУ4), схема преобразователя получилась простой и сохраняющая работоспособность при изменении питающего напряжения от 7 до 15 В. Микросхема TL494 применяется практически во всех компьютерных блоках питания , выходит из строя редко, поэтому ее можно для изготовления стробоскопа выпаять из не подлежащего ремонту блока.

С выводов микросхемы 9 и 10 выходят прямоугольные противофазные импульсы с частотой около 20 кГц, заданной номиналом конденсатора С1 и резистора R1, и через токоограничивающие резисторы R4,5 номиналом 1 кОм поступают на базы ключевых транзисторов VT1,2. С2,3 нужны для улучшения передних фронтов импульсов, VD1,2 защищают транзисторы от пробоя обратным напряжением. Если поставить полевые транзисторы, например IRFZ44N, то резисторы R4,5 и конденсаторы С2,3 нужно исключить, а емкость конденсатора С1 уменьшить до 1000 пф. Тогда частота работы преобразователя увеличится до 200 кГц, что позволит измерять угол опережения зажигания при оборотах двигателя до 10000 об/мин.

Открываясь по очереди, транзисторы обеспечивают протекание тока по первичным обмоткам трансформатора Т1, благодаря чему во вторичной обмотке возникает высокое напряжение, которое поступает на диодный мост и уже выпрямленное заряжает конденсатор С5 до величины 400 В. Это напряжение подводится к 5 выводу лампы EL1 и еще через токоограничивающий резистор R5 и первичную обмотку трансформатора Т2 заряжает конденсатор узла поджига С6.

Датчик момента искрообразования собран на катушке индуктивности L1, транзисторе VT3, и тиристоре VD8. Через кольцо трансформатора продевается высоковольтный провод, идущий к свече. В момент появления высокого напряжения, в катушке наводится ЭДС, которая через конденсатор С7 поступает на базу транзистора VT3. Транзистор закрывается и на управляющий электрод тиристора VD8 поступает через резистор R7 положительное напряжение. Тиристор открывается и конденсатор С6 через него разряжается. При этом ток разряда проходит через первичную обмотку трансформатора Т2. Во вторичной обмотке наводится высокое напряжение поджига лампы, которое подается на ее вывод 7. Конденсатор С5, подключенный к выводам лампы 1 и 5, полностью через нее разряжается. Величина емкости конденсатора определяет яркость вспышки.

Применяемый тиристор VD8 имеет максимально допустимое напряжение анод-катод 300 В. Установленный резистор R6 совместно с резистором R5 образуют делитель, исключающий подачу напряжения более 300 В. При использовании более высоковольтного тиристора резистор R6 нужно исключить.

Для защиты по питанию установлен предохранитель на 5А, а от неправильного подключения полярности диод VD9. VD11 индицирует о подключении стробоскопа к аккумулятору.

Конструкция и детали

Вся схема стробоскопа собрана в двух половинчатом пластмассовом корпусе размером 4,5×7,5×16 см. Для выхода света от импульсной лампы в торцевой стенке сделано круглое отверстие, в которое вставлена линза в оправке.


Это не обязательно, окошко можно закрыть для защиты от попадания внутрь стробоскопа грязи любым прозрачным материалом, например органическим стеклом. Лампа, для уменьшения световых потерь, на половину обвернута станиолевой фольгой.


Все детали стробоскопа, кроме лампы, собраны на печатной плате , представленной на фотографии.

Импульсный трансформатор Т1 имеет две обмотки. Первичная обмотка имеет отвод от середины. При намотке нужно отмерять необходимую длину провода диаметром 0,3-0,5 мм, сложить его вдвое и намотать 24 витка. Затем начало одной обмотки соединить с концом другой, это будет средняя точка. Вторичная обмотка мотается проводом диаметром 0,15-0,25 мм в количестве 638 витков. Для изготовления трансформатора ферритовый сердечник с катушкой можно использовать от понижающего трансформатора неподлежащего ремонту импульсного блока питания АТ или АТХ компьютера, предварительно удалив все обмотки.

Импульсный трансформатор поджига Т2 мотается на ферритовом кольце диаметром 15-20 мм проницаемостью от 1000 до 3000 НМ. Первичная обмотка мотается проводом 0,3 мм и имеет 4 витка. Вторичная обмотка мотается проводом диаметром 0,1 мм в шелковой изоляции и количеством витков 500. Большое количество витков вторичной обмотки взято не случайно, при больших оборотах двигателя конденсатор С6 не успевает полностью заряжаться и напряжение поджига уменьшается. Благодаря запасу обеспечивается достаточное напряжение для поджига. Перед намоткой ферритовое кольцо нужно обязательно покрыть изоляционной лентой для исключения повреждения изоляции провода. Перед покрытием изоляцией необходимо мелкой наждачной бумагой, сточить острые грани по окружностям кольца. После намотки, для исключения межвиткового пробоя изоляции при высокой влажности, обмотки трансформатора пропитаны воском.

Катушка индуктивного датчика намотана на ферритовом кольце диаметром 40 мм с проницаемостью от 1000 до 3000 НМ. На кольцо равномерно по всей окружности намотано 35 витков провода диаметром 0,8 мм. Сверху обмотка покрыта слоем изоляционной ленты.

Диаметр ферритового кольца выбран исходя и возможности продевания через катушку высоковольтного провода, идущего к автомобильной свече. Но практика применения стробоскопа показала, что он начинает устойчиво работать, если просто катушку приложить к высоковольтному проводу.

К аккумулятору стробоскоп подключается с помощью двух зажимов типа «крокодил». Для безошибочного подключения на крокодилах нанесена маркировка полярности.

Конденсаторы С5 и С6 типа К73-17. Импульсная лампа EL1 типа ИСШ-15, является маломощным строботроном, срок ее службы более 300 часов. Она специально разработана для стробоскопов.

В отличии от ИФК-120, лампа ИСШ-15 имеет больший ресурс и может работать на более высоких частотах. При отсутствии ИСШ-15, можно использовать ИФК-120.

Для удобства работы при установке угла опережения зажигания в автомобиле, в стробоскоп вмонтирован двух диапазонный аналоговый тахометр с растянутой шкалой .

Настройка стробоскопа

Если не допущены ошибки в печатной плате и исправны элементы схемы, то настраивать нечего не нужно. Стробоскоп сразу заработает. Для упрощения поиска возможных ошибок целесообразно плату собирать узлами с последующей их проверкой. Сначала запаивается микросхема TL494, ее обвязка С1, R1- R3, С4 и VD9. Подается напряжение и проверяется осциллографом наличие прямоугольных импульсов на выводах 9 и 10 микросхемы. Далее устанавливаются все детали, расположенные на схеме левее лампы, подается питание и замеряется напряжение на С5, которое должно быть 300-400 В. Дале запаиваются все остальные элементы. Подается питающее напряжение, при замыкании анода с катодом тиристора VD8 должна происходить вспышка лампы. Для проверки работы стробоскопа можно рядом с катушкой L1 пощелкать пьезоэлектрической зажигалкой. При каждом щелчке лампа стробоскопа должна вспыхивать.Если есть генератор, то вместо катушки нужно подключить его выход. Стробоскоп будет мигать с частотой генератора. 800 оборотов двигателя в минуту соответствует частоте генератора около 13 Гц.

Для перевода оборотов двигателя в частоту нужно число оборотов в минуту поделить на 60 (количество секунд в минуту), но гораздо удобнее воспользоваться табличными данными.

Как пользоваться стробоскопом

Для запуска стробоскопа в работу нужно при отключенном двигателе автомобиля продеть в кольцо индуктивного датчика стробоскопа снятый со свечи зажигания первого цилиндра высоковольтный провод и надеть его обратно на свечу. Подключить, соблюдая полярность, крокодилы к клеммам аккумулятора. Запустить двигатель автомобиля и включить стробоскоп выключателем. При этом должен засветиться светодиод VD11 и засверкать в такт искре лампа стробоскопа EL1.

Вспышки стробоскопа имеют высокую яркость, что позволяет видеть метку на маховике двигателя при установке угла опережения зажигания даже в солнечную погоду.

Ответы на вопросы посетителя сайта по настойке стробоскопа

Посетитель сайта Юрий, повторил схему стробоскопа и остался доволен его работой. От изготовления стробоскопа на базе сверх ярких светодиодов его остановила цена светодиодов. При настройке стробоскопа у Юрия возник ряд вопросов, на которые я давал ответы в ходе переписки. Ответами на вопросы из переписки, с разрешения Юрия, с которыми могут столкнуться автолюбители, желающие повторить схему представленного стробоскопа, решил дополнить эту статью.

Вопрос Ответ
Можно ли заменить тиристор КУ103В тиристором ВТ169G? Да, можно заменить на ВТ169D или ВТ169G. Так как максимальное напряжение анод-катод у ВТ169 не менее 400 В, то резистор R6 можно не ставить, он установлен для защиты КУ103В.
При шунтировании анода и катода тиристора лампа вспыхивает, но при открытии-закрытии транзистора вручную лампа не реагирует. Тиристор или транзистор неправильно запаян или неисправен. Номиналы резисторов не соответствуют схеме.
Для выявления причины нужно отключить от управляющего электрода тиристора все элементы. В таком случае тиристор должен быть закрыт. Если к управляющему электроду присоединить через резистор по схеме R7 номиналом 27 кОм, то тиристор должен открываться. Если открывается, то виноват транзистор. Если тиристор не открывается, то можно уменьшить номинал резистора вплоть до 1 кОм, если открыть его, таким способом не удается, значит, тиристор неисправен.
Тиристор исправен, при прикосновении к управляющему электроду тиристора лампа вспыхивала однократно, получалось как сенсорное. Мне не понятно как закрывается тиристор, возможно, он запирается потенциалом управляющего электрода? Тиристор сам закрывается только тогда, когда напряжение анод-катод станет меньше определенного для каждого типа тиристора. Поэтому, когда конденсатор С6 разрядится, тиристор сам закроется. Резистор R8 выполняет функцию защиты транзистора от возможных высоковольтных импульсов и одновременно предотвращает случайное открытие тиристора от этих же импульсов.
На конденсаторе я добился напряжения 400 В при частоте генерации 200 кГц (поставил полевые транзисторы как указано в статье) но при емкости С5 - 1 мкФ яркость вспышки незначительна (лампа ИФК-120), при увеличении С5 до 10 мкФ стало слепить. Понимаю, что увеличение емкости приведет к неполному ее заряду на высоких оборотах, какую емкость оставить? По поводу высокого напряжения, его можно поднять хоть до киловольта, намотав больше витков вторичной обмотки, при этом яркость вспышки возрастет соответственно. Но величина напряжения не должна превышать допустимого для лампы. Поэтому лучше намотать больше витков, чем увеличивать емкость, а емкость уже подобрать исходя из максимальных оборотов, которые нужно контролировать.
По паспорту лампа ИФК-120 номинальное напряжение 300±20 В, т.е. не стоит увеличивать напряжение более имеющихся уже 400 В? Не стоит, так как повышенное напряжение может вызвать самопроизвольные вспышки лампы.
Из характеристик тиристора BT169G - отпирающее управляющее напряжение 0,5-0,8 В, т.е. когда транзистор VT3 открыт схема должна обеспечивать напряжение на его коллекторе относительно земли менее 0,5 В чтобы тиристор оставался закрытым? Да.
При закрытом транзисторе соответственно напряжение на его коллекторе и на управляющем электроде тиристора должно превысить 0,5 В, но не более 0,8 В дабы не спалить управляющий переход тиристора? Да, в цепи управляющего электрода тиристора стоит резистор R7, который ограничит величину тока, тем самым, исключая возможность увеличения напряжения более 0,8 В.
Играет ли роль какой стороной будет надеваться ферритовое кольцо на высоковольтный провод, или для этого и установлен в схеме VD10? Не играет, диод для этого и стоит.
Есть ли смысл заменить VT10 на полевой транзистор? В данном случае в этом нет необходимости, полевые транзисторы боятся статического электричества и без необходимости их лучше не применять.
Изменения, которые внес Юрий при повторении схемы стробоскопа. Лампу EL1 ИСШ-15 заменил на ИФК-120. Транзисторы VT1 и VT2 типа КТ817Б заменил полевыми IRFZ44N, VT3 типа КТ3102 на BC547. Тиристор КУ103В на ВТ169G. Резистор R8 c 820 Ом увеличил до 2 кОм, конденсатор С5 увеличил до 10 мкФ.

Отзыв Юрия о работе стробоскопа сделанного своими руками: «Работа стробоскопа проверена на автомобиле, работает отлично, яркость вспышки великолепная!!!»

В интернете очень долго пытался найти схему светодиодного стробоскопа. Понимающие в электронике люди сейчас скажут «подумаешь, стробоскоп, и что там сложного». Стробоскопы бывают разными, и все известные ранее схемы мне не подходили, поскольку единственной целью было получить эффект милицейского стробоскопа. Может не все заметили, но милицейская мигалка работает весьма интересным образом – каждая лампочка вспыхивает несколько раз, затем переключается. В итоге получаем эффект, который более известен под названием «полицейская мигалка».

Стробоскоп можно собрать на разных схемах с применением мультивибратора, но ни одна из них не обеспечивает нужного эффекта или же эффект не стабильный. Такая задача вполне выполнима, если уметь прошивать МК, но в моем случае не было возможности (недружелюбен к микроконтроллерам). Оставалось найти альтернативу на простых и доступных элементах. На зарубежных сайтах была найдена весьма интересная электросхема с применением таймера 555 серии. Микросхема работает как генератор прямоугольных импульсов.

В схеме также использован счётчик К561ИЕ8 (в моем случае использован импортный аналог, в общем он не критичен). Микросхема, представляет, из себя десятичный счётчик-делитель, то есть имеет 10 дешифрированных выходов. Она состоит из высокоскоростных счётчиков и дешифраторов. Работа счётчика, думаю, понятна всем, пояснять не буду. Для того, чтобы получить эффект мигалки, где каждый светодиод мигает по два раза, нужно использовать два близких выходов счётчика. При подаче сигнала на счётчик, на выходах поочерёдно образуются импульсы. Сначала импульс образуется на первом выходе, затем переключается на второй, третий и так до конца, потом процесс повторяется сначала. Частоту и интенсивность вспышек можно регулировать, если регулируется номиналом резистора между 6 и 7 выводами таймера. В выходном каскаде можно использовать практически любые мощные транзисторы обратной проводимости, в моем варианте использовались 13007 (выпаяны из платы балласта ЛДС).


Можно также настроить количество вспышек на каждую лампу (1-5 вспышек до переключения). Для этого просто добавляем диоды на выходы микросхемы. К примеру, один канал это выводы 4 и 2, а второй соответственно 7 и 9, для тройной вспышки один канал, просто нужно выводы 1,3,5 (первый канал) и 6,8,0 (второй канал) диодами подключить друг к другу. Мощность подключённой нагрузки зависит от силовых ключей. Если планируется маломощный стробоскоп на светодиодах, то на выходе можно использовать маломощные КТ315, при более мощных нагрузках в качестве выходных ключей стоит использовать полевые транзисторы.


Устройство имеет достаточно широкий диапазон входных напряжений, начинает работать от 4,5-5 вольт, при этом частота вспышек не меняется в зависимости от номинала входного напряжения. Такой стробоскоп обошёлся всего 1,5$ (транзисторы имелись в наличии). Из схемы также можно исключить стабилизатор напряжения на 5 вольт, микросхема прекрасно работает от автомобильного аккумулятора. Если планируете использовать светодиоды, то не забудьте про ограничительные резисторы, а то будете наблюдать за помутнением кристалла светодиодов.


Весь монтаж сделал в алюминиевом корпусе от китайского электронного трансформатора для питания галогенок на 12 вольт.


Корпус оказался очень подходящим. Устройство прям от заводского не отличить, хотя монтаж компонентов делался на макетной плате.