Микросхема attiny2313 схемы своими руками. Устройство рисования в воздухе на ATtiny2313. Диапазон питающего напряжения

Тахометр измеряет частоту вращения деталей, механизмов и других агрегатах автомобиля. Тахометр состоит из 2-х основных частей — из датчика, который измеряет скорость вращения и из дисплея, где будет показать значения. Во основном тахометр градуируется в оборотах в минуту.

Сделать такой прибор самостоятельно конечно же можно, предлагаю схему с микроконтроллером AVR Attiny2313. С таким микроконтроллером можно получить 100 — 9990 об /мин. , точность измерения составляет +/-3 оборотов в минуту.

Характеристики микроконтроллера ATtiny2313

EEPROM 1 Кб
Аналоговые входы (АЦП) 0
Входное напряжение (предельное) 5,5 Вольт
Входное напряжение (рекомендуемое) 4,5-5 Вольт
ОЗУ 128 байт
Тактовая частота 20 МГц
Flash-память 2кБ

На выводе 11 установлен резистор с номиналом 4.7 кОм, не изменяйте номинал, а то датчик начнет работать нестабильно при включение по однопроводной схеме.

В отличие других схем, тут использовались 4 транзистора и 4 резистора, таким образом схему упростили.

Схема имеет 8 сегмента в каждом символе, по 5 мА каждый, общая сумма будет 40 мА, следовательно на порты нет большой нагрузки. Посмотрим графики работы устройства.

Из графики можно заметить что ток может достигнуть от 60мА до 80мА на выход пин. Для точной настройки нужно подбирать ограничительные резисторы с номиналом 470 оМ.

Выбор дисплея не критичен, выбирайте любой светодиодный индикатор на четыре цифры, либо собирайте из отдельных светодиодов. Используйте красный индикатор, чтобы на солнце было все хорошо видно. Тахометр питается от 12 вольт.

Кварцевый резистор выбран на частоту 8МHz, для точного и стабильного измерения. Входной фильтр используется для подключения к выводу катушки зажигания.

В прошивке в 17-й строке найдите следующее.

17. #define byBladeCnt 2 //1- две катушки, 2 — одна катушка, 4 — мотоцикл…

Этот параметр нужно менять, если у вас советский автомобиль то поставьте 2, если мотоцикл то 4, а если автомобиль с системой зажигания с двумя катушками то 1.



Как производится программирование микроконтроллеров ATtiny2313? Итак, имеем микроконтроллер ATtiny2313, LPT порт (обязательно железный - никакие USB-2-LPT не работают), несколько проводков (длина не более 10см) и конечно же паяльник. Желательно иметь разъём DB-25M (папа), с ним будет удобней подключать микроконтроллер, но можно обойтись и без него. Припаиваем проводки к выводам 1, 10, 17, 18, 19, 20 микроконтроллера. Получаем нечто вроде того, что на фото:


Я делал без разъёма (в наличии были только мамы...), и вот что получилось:


Правда у меня LPT порт вынесен на стол с помощью кабеля длиной 1,5 метра. Но при этом кабель должен быть экранированный, иначе будут наводки, помехи и ничего не получится. Схема этого устройства программирования микроконтроллера вот такая:


Если быть совсем честным, то желательно собрать "правильный" программатор. И потом будет проще и порт целее. Я пользую STK200/300. Далее используем программу PonyProg2000. После запуска программы она "заржет...." как настоящий пони. Чтобы этого больше не слышать в появившемся окне ставим галочку "Disable sound". Жмём "ОК". Выскакивает окошко которое говорит, что нужно откалибровать программу. Компы бывают же разные и медленные и шустрые. Жмём "ОК". Выскакивает ещё одно окошко - это нам говорит, что нужно настроить интерфейс (какой программатор и куда подключен.). Итак заходим в меню: Setup -> Calibration. В появившемся окне:


Жмём "YES". Проходит пара секунд и программа говорит "Calibration OK". Далее заходим в меню: Setup -> Interface Setup. В появившемся окошке настраиваем как у показано на рисунке.


Теперь заходим в меню: Command -> Program Options. В появившемся окошке настраиваем как показано на рисунке.


Всё готово к программированию!... Итак, последовательность действий:


1. Выбираем из списка "AVR micro"
2. Из другого списка выбираем "ATtiny2313"
3. Загружаем файл прошивки (File -> Open Device File), выбираем нужный файл, например "rm-1_full.hex".
4. Жмём кнопочку "Launch program cycle". Когда программирование завершится прога скажет "Program successful"
5. Ну и напоследок надо запрограммировать так называемые Фьюзы (fuses). Для этого жмём кнопочку "Security and Configuration Bits". В появившемся окне жмём "Read", потом выставляем галочки и жмём "Write".

ВНИМАНИЕ! Если Вы не знаете, что означает тот или иной конфигурационный бит, то не трогайте его. Вот теперь у нас готовый к работе контроллер ATtiny2313! На форуме можно скачать программу PonyProg2000 и оригинал статьи с дополнительными рисунками. Материал для сайта Радиосхемы предоставил Ansel73.

AVR RISC архитектура:

RISC (Reduced Instruction Set Computer). Данная архитектура обладает большим набором инструкций, основное количество которых исполняются в 1 машинный цикл. Из этого следует, что по сравнению с предшествующими микроконтроллерами на базе CISC архитектуры (например, MCS51), у микроконтроллеров на RISC быстродействие в 12 раз быстрее.

Или если взять за базу определенный уровень быстродействия, то для выполнения данного условия микроконтроллерам на базе RISC (Attiny2313) необходима в 12 раз меньше тактовая частота генератора, что приводит к значительному снижению энергопотребления. В связи с этим возникает возможность конструирование различных устройств на Attiny2313, с использованием батарейного питания.

Оперативно — Запоминающее Устройство (ОЗУ) и энергонезависимая память данных и программ:

  • 2 кБ самостоятельно программируемой в режиме Flash памяти программы, которая может обеспечить 10 000 повторов записи/стирания.
  • 128 Байт записываемой в режиме EEPROM памяти данных, которая может обеспечить 100 000 повторов записи/стирания.
  • 128 Байт SRAM памяти (постоянное ОЗУ).
  • Имеется возможность использовать функцию по защите данных программного кода и EEPROM.

Свойства периферии:

  1. Микроконтроллер Attiny2313 снабжен восьми разрядным таймер-счетчиком с отдельно устанавливаемым предделителем с максимальным коэффициентом 256.
  2. Так же имеется шестнадцати разрядный таймер-счетчик с раздельным предделителем, схемой захвата и сравнения. Тактироваться таймер – счетчик может как от внешнего источника сигнала, так и от внутреннего.
  3. Два канала. Существует режим работы быстрый ШИМ-модуляции и ШИМ с фазовой коррекцией.
  4. Внутренний аналоговый компаратор.
  5. Сторожевой таймер (программируемый) с внутренним генератором.
  6. Последовательный универсальный интерфейс (USI).

Особые технические показатели Attiny2313:


  • Idle — Режим холостого хода. В данном случае прекращает свою работу только центральный процессор. Idle не оказывает влияние на работу SPI, аналоговый компаратор, аналого-цифровой преобразователь, таймер-счетчик, сторожевой таймер и систему прерывания. Фактически, происходит только остановка синхронизация ядра центрального процессора и флэш-памяти. Возврат в нормальный режим работы микроконтроллера Attiny2313 из режима Idle происходит по внешнему либо внутреннему прерыванию.
  • Power-down — Наиболее экономный режим, при котором микроконтроллер Attiny2313 фактически отключается от энергопотребления. В этом состоянии происходит остановка тактового генератора, выключается вся периферия. Активным остается лишь модуль обработки прерываний от внешнего источника. При обнаружении прерывания микроконтроллер Attiny2313 выходит из Power-down и возвращается в нормальный режим работы.
  • Standby – в этот дежурный режим энергопотребления микроконтроллер переходит по команде SLEE. Это аналогично выключению, с той лишь разницей, что тактовый генератор продолжает свою работу.

Порты ввода — вывода микроконтроллера Attiny2313:

Микроконтроллер наделен 18 выводами ввода – вывода, которые можно запрограммировать исходя из потребностей, возникающих при проектировании конкретного устройства. Выходные буферы данных портов выдерживают относительно высокую нагрузку.

  • Port A (PA2 — PA0) – 3 бита. Двунаправленный порт ввода-вывода с программируемыми подтягивающими резисторами.
  • Port B (PB7 — PB0) – 8 бит. Двунаправленный порт ввода-вывода с программируемыми подтягивающими резисторами.
  • Port D (PD6 — PD0) – 7 бит. Двунаправленный порт ввода-вывода с программируемыми подтягивающими резисторами.

Диапазон питающего напряжения:

Микроконтроллер успешно работает при напряжении питания от 1,8 до 5,5 вольт. Ток потребления зависит от режима работы контроллера:

Активный режим:

  • 20 мкА при тактовой частоте 32 кГц и напряжении питания 1,8 вольт.
  • 300 мкА при тактовой частоте 1 МГц и напряжении питания 1,8 вольт.

Режим энергосбережения:

  • 0,5 мкА при напряжении питания 1,8 вольт.

(3,6 Mb, скачано: 5 934)

Как собрать простейшую схему, как подключить программатор к микроконтроллеру ATtiny2313, как написать простейшую программу на языке Си и как прошить нашей программой микроконтроллер ATtiny2313, все это вы найдете в этой статье.

Первым делом нам нужен программатор, разновидностей программаторов много, какой программатор выбрать?
Есть обычные программаторы в который нужно вставлять микроконтроллер, прошивать, вынимать микроконтроллер и потом вставлять его в нашу плату, чтобы увидеть результат и эту последовательность придется делать первое время сотни раз, этот вариант на мой взгляд не удобный.
Наш микроконтроллер ATtiny2313 поддерживает функцию внутрисхемного программирования ISP (In-System Programming) через SPI порт, этот вариант использования внутрисхемного программирования ISP на мой взгляд самый удобный и быстрый, т.к. микроконтроллер из нашей платы вынимать не нужно после каждой прошивки, можно программировать микроконтроллер сотни раз и сразу же не отключая программатор от компьютера и платы, видеть результат после прошивки микроконтроллера, процесс отладки программного обеспечения радиолюбительского устройства заметно упрощается и сокращается затрачиваемое на это время.
Внутрисхемный программатор ISP можно сделать самому, в интернете есть множество простых схем как это делается через LPT,COM порт, например программатор PonyProg в интернете можно найти схемы как его сделать.

В данной статье будет рассматриваться работа с внутрисхемным ISP программатором для микроконтроллеров AVR (PX-400) он работает через COM порт.
Если у вас нет COM порта в компьютере, нужен будет еще переходник с USB порта на COM порт, переходников таких тоже много разновидностей, я рекомендую переходник с которым я работал: UCON-232S USB to Serial port converter board
Фото программатора PX-400 , переходника UCON-232S USB , Datasheet ATTiny2313

Разберем подробнее все детали данной схемы:
(На всякий случай, все детали, программатор, переходик (с USB на COM порт) я покупал в chipdip.ru)

1 - PBD-20 гнездо на плату 2.54мм 2х10 прямое - Это я сделал для удобства, чтобы проще было проверять сигналы с выводов микроконтроллера, этот пункт можно было не делать.
2 - SCS-20 DIP панель 20 контактов - панель припаиваем к плате, чтобы была возможность заменить микроконтроллер в плате если потребуется,
ATtiny2313-20PU, DIP20, МCU, 5V, 1K-Flash, 12MHz - Микроконтроллер вставляем в DIP панель.
3 - Кварцевый резонатор 4.000 МГц (усечен.) HC-49S - Кварцевый резонатор 4 МГц
4 - Керамический конденсатор К10-17Б имп. 22пФ NPO,5%,0805 - Два керамических конденсатора по 22пФ
5 - 78M05 (+5В, 0.5А) TO220 - Стабилизатор напряжения 5В, подает на микроконтроллер стабилизированное питание не более +5В, в данном случае у меня получилось 4,4В, этого вполне хаватает.
6 - NP-116 штекер питания 1.3х3.4х9.5мм MP-331 (7-0026c) - Штекер питания припаял к старому зарядному устройству от мобильного телефона DC 5.7V/800mA
7 - DS-213 гнездо питания на плату - гдездо питания для штекера NP-116, для удобства подключения питания
8 - IDC-10MS (BH-10), вилка прямая - Вилка для подключения внутрисхемного ISP программатора
9 - Резистор постоянный 0,25Вт 150 Ом - Три резистора по 150 Ом на выводы MISO,SCK,MOSI
10 - Резистор постоянный 0,25Вт 47 Ом - Один резистора 47 Ом на вывод RESET
11 - Кнопка тактовая h=5мм, TC-0103 (TS-A2PS-130) - Кнопка сброса RESET, после нажатия на кнопку программа в микроконтроллере запускается с начала, кнопку можно было не делать.
12 - Светодиод зеленый d=3мм, 2.5В, 2мА - Выполняет функцию индикатора, этот пункт можно было не делать.
13 - Резистор постоянный 0,25Вт 110 Ом - Резистор для светодиода, чтобы на светодиоде было 2В, этот пункт можно было не делать
14 - Два провода подключенные к светодиоду, для проверки сигналов с выводов микроконтроллера, этот пункт можно было не делать
15 - Дип-Рм печатная макетная плата 100х100мм

Пункты 3 и 4 Работают как единое целое, как внешний тактовый генератор,эти пункты можно не делать, если вы не предъявляете высоких требований к точности и стабильности внутреннего RC-Генератора, внутренний RC-Генератор имеет погрешность около 10% и на точность может влиять изменение температуры.

Итак, вы скачали и установили Atmel Studio :
Запускаем Atmel Studio и напишем простейшую программу на языке Си мигание светодиодом:
Нажимаем: New project... \ AVR GCC \ C \ C Executable Project
Указываем папку где сохранить проект и название проекта например Test1 и нажимаем ОК.
Из списка выбираем наш микроконтроллер ATtiny2313 и нажимаем ОК.
Стираем все что появилось в окне и вставляем наш код программы который ниже:

#define F_CPU 4000000L //Указываем частоту нашего внешнего кварца 4 МГц
#include
#include
int main(void)
{
//Устанавливаем все выводы PORTB как выходы
DDRB=0xFF;//Регистр направления передачи информации (1-выход, 0-вход)
while(1)
{
//Регистр данных PORTB (используется для вывода информации)
PORTB=0b00000001;//Подаем 1 на 12 порт МК PB0 - включаем светодиод
PORTB=0b00000000;//Подаем 0 на 12 порт МК PB0 - выключаем светодиод
_delay_ms(1000);//Задержка 1 сек.
}
}

Заходим в меню Build \ Configuration manager \ Active solution configuration \
Выбираем Release , нажимаем Close
Это мы сделали для того, чтобы у нас появилась в проекте папка Release , о которой я расскажу ниже.

Нажимаем F7 , готово, наше приложение откомпилировалось!
Для прошивки микроконтроллера ATtiny2313 нам нужен только один файл с расширением HEX
Он находится в папке нашего проекта: ...
Обратите внимание, файл Test1.hex нуно взять именно из папки Release !
Не перепутайте, т.к. папке Debug лежит тоже файл Test1.hex , но в этом файле еще содержится отладочная информация и из-за этого вы прошить этим файлом не сможете т.к. он обычно бывает большого размера и не поместится в памяти МК.

Файл.hex нашли, теперь нужна программа для прошивки микроконтроллера ATtiny2313, программ таких много, но мы воспользуемся программой: Avr-Osp II
Скачать:

Подключаем программатор к нашей схеме, на схему обязательно подаем питание!

Запускаем программу Avr-Osp II , указываем в разделе FLASH путь к файлу...\Test1\Test1\Release\Test1.hex ,устанавливаем галочки в программе и нажимаем кнопку Program вот и все, микроконтроллер ATtiny2313 прошит!

В чем приемущество внутрисхемных программаторов ISP, теперь не отключая провода от нашей схемы, можно делать изменения в программе, и как описывалось выше прошивать микроконтроллер и сразу видеть результат.

Вопросы и комментарии оставляйте пожалуйста на нашем форуме

Во многих устройствах бытовой техники и промышленной автоматики сравнительно недавних лет выпусков установлены механические счетчики. Они продукцию на конвейере, витки провода в намоточных станках и т. п. В случае выхода из строя найти аналогичный счетчик оказывается непросто, в отремонтировать невозможно ввиду отсутствия запасных частей. Автор предлагает заменить механический счетчик электронным. Электронный счетчик, разрабатываемый на замену механическому, получается слишком сложным, если строить его на микросхемах малой и средней степени интеграции (например, серий К176, К561). особенно если необходим реверсивный счет. А чтобы сохранить результат при выключенном питании, необходимо предусмотреть резервную батарею питания.

Но можно построить счетчик всего на одной микросхеме - универсальном программируемом микроконтроллере, имеющем в своем составе разнообразные периферийные устройства и способном решать очень широкий круг задач. Многие микроконтроллеры имеют особую область памяти - EEPROM. Записанные в нее (в том числе во время исполнения программы) данные, например, текущий результат счета, сохраняются и после отключения питания.

В предлагаемом счетчике применен микроконтроллер Attiny2313 из семейства AVR фирмы Almel. В приборе реализован реверсивный счет, вывод результата с гашением незначащих н

улей на четырехразрядный светодиодный индикатор, хранение результата в EEPROM при выключенном питании. Встроенный в микроконтроллер аналоговый компаратор использован для своевременного обнаружения уменьшения напряжения питания. Счетчик запоминает результат счета при отключении питания, восстанавливая его при включении, и аналогично механическому счетчику снабжен кнопкой обнуления показаний.

Схема счетчика представлена на рисунке. Шесть линий порта В (РВ2- РВ7) и пять линий порта D (PDO, PD1, PD4-PD6) использованы для организации динамической индикации результата счета на светодиодный индикатор HL1. Коллекторными нагрузками фототранзисторов VT1 и VT2 служат встроенные в микроконтроллер и включенные программно резисторы, соединяющие соответствующие выводы микроконтроллера с цепью его питания.

Увеличение результата счета N на единицу происходит в момент прерывания оптической связи между излучающим диодом VD1 и фототранзистором VT1, что создает нарастающий перепад уровня на входе INT0 микроконтроллера. При этом уровень на входе INT1 должен быть низким, т. е. фототранзистор VT2 должен быть освещен излучающим диодом VD2. В момент нарастающего перепада на входе INT1 при низком уровне на входе INT0 результат уменьшится на единицу. Другие комбинации уровней и их перепадов на входах INT0 и INT1 результат счета не изменяют.

По достижении максимального значения 9999 счет продолжается с нуля. Вычитание единицы из нулевого значения дает результат 9999. Если обратный счет не нужен, можно исключить из счетчика излучающий диод VD2 и фототранзистор VT2 и соединить вход INT1 микроконтроллера с общим проводом. Счет будет идти только на увеличение.

Как уже сказано, детектором снижения напряжения питания служит встроенный в микроконтроллер аналоговый компаратор. Он сравнивает нестабилизированное напряжение на выходе выпрямителя (диодного моста VD3) со стабилизированным на выходе интегрального стабилизатора DA1. Программа циклически проверяет состояние компаратора. После отключения счетчика от сети напряжение на конденсаторе фильтра выпрямителя С1 спадает, а стабилизированное еще некоторое время остается неизменным. Резисторы R2-R4 подобраны так. что состояние компаратора в этой ситуации изменяется на противоположное. Обнаружив это, программа успевает записать текущий результат счета в EEPROM микроконтроллера еще до прекращения его функционирования по причине выключения питания. При последующем включении программа прочитает число, записанное в ЕЕРРОМ, и выведет его на индикатор. Счет будет продолжен с этого значения.

Ввиду ограниченного числа выводов микроконтроллера для подключения кнопки SB1, обнуляющей счетчик, использован вывод 13, служащий инвертирующим аналоговым входом компаратора (AIM) и одновременно - «цифровым» входом РВ1. Делителем напряжения {резисторы R4, R5) здесь задан уровень, воспринимаемый микроконтроллером как высокий логический При нажатии на кнопку SB1 он станет низким. На состояние компаратора это не повлияет, так как напряжение на входе AIN0 по-прежнему больше, чем на AIN1.

При нажатой кнопке SB1 программа выводит во всех разрядах индикатора знак «минус», а после ее отпускания начинает счет с нуля. Если при нажатой кнопке выключить питание счетчика, текущий результат не будет записан в EEPROM, а хранящееся там значение останется прежним.

Программа построена таким образом, что ее легко адаптировать к счетчику с другими индикаторами (например, с общими катодами), с другой разводкой печатной платы и т. п. Небольшая коррекция программы потребуется и при использовании кварцевого резонатора на частоту, отличающуюся более чем на 1 МГц от указанной.

При напряжении источника 15 В измеряют напряжение на контактах 12 и 13 панели микроконтроллера относительно общего провода (конт.10). Первое должно находиться в интервале 4…4.5 В, а второе - быть больше 3,5 В, но меньше первого. Далее постепенно уменьшают напряжение источника. Когда оно упадет до 9… 10 В, разность значений напряжения на контактах 12 и 13 должна стать нулевой, а затем поменять знак.

Теперь можно установить в панель запрограммированный микроконтроллер, подключить трансформатор и подать на него сетевое напряжение. Спустя 1,5…2 с нужно нажать на кнопку SB1. На индикатор счетчика будет выведена цифра 0. Если на индикатор ничего не выведено, еще раз проверьте значения напряжения на входах AIN0.AIN1 микроконтроллера. Первое должно быть больше второго.

Когда счетчик успешно запущен, остается проверить правильность счета, поочередно затеняя фототранзисторы непрозрачной для ИК лучей пластиной. Для большей контрастности индикаторы желательно закрыть светофильтром из красного органического стекла.