Расчет показателей надежности долговечность примеры. Расчет надежности системы. Целевое назначение и классификация методов расчета

Как отмечалось выше по основным принципам расчета свойств, составляющих надежность, или комплексных показателей надежности объектов различают:

Методы прогнозирования,

Структурные методы расчета,

Физические методы расчета,

Методы прогнозирования основаны на использовании для оценки ожидаемого уровня надежности объекта данных о достигнутых значениях и выявленных тендециях измезнения показателей надежности объектов-аналогов. (Объекты-анагалоги – это объекты аналогичные или близкие к рассматриваемому по назначению, принципам действия, схем­но-конструктивному построению и технологии изготовления, элементной базе и применяемым мате­риалам, условиям и режимам эксплуатации, принципам и методам управления надежностью).

Структурные методы расчета основаны на представлении объекта в виде логической (структурно-функциональной) схемы, описывающей зависимость состояний и переходов объекта от состояний и переходов его элементов с учетом их взаимодействия и выполняемых ими функций в объекте с последующими описаниями построенной структурной модели адекватной мате­матической моделью и вычислением показателей адежности объекта по известным характеристикам надежности его эле­ментов.

Физические методы расчета основаны на применении математических моделей, описывают их физические, химические и иные процессы, приводящие к отказам объектов (к дости­жению объектами предельного состояния), и вычислении показателей надежности по известным параметрам (загруженнос­ти объекта, характеристикам примененных в объекте веществ и материалов с учетом особенностей его конструкции и техиолопей изготовления.

Методы расчета надежности конкретного объекта выбирают в зависимости от: - целей расчета и требовалий к точности определения показателей надежности объекта;

Наличия и/или возможности получения исходной информации, необходимой для применения определенного метода расчета;

Уровня отработанности конструкции и технологии изготовления объекта, системы его технического обслуживания и ремонта, позволяющего применять соответствующие расчетные модели надежности. При расчете надежности конкретных объектов возможно одновременное применение различных методой, например, методов прогнозирования надежности электронных и электротехнических элементов с последующим использованием полученных результатов в качестве исходных данных для расчета надежности объекта в целом или его составных частей различными структурными методами.

4.2.1. Методы прогнозирования надежности

Методы прогнозирования применяют:

Для обоснованпя требуемого уровня надежности объектов при раработке технических заданий и/или опенки вероятности достижения заданных показателей надежности при проработке технических предложений и анализе требований технического задания (контракта);

Для ориентировочной оценке ожндемого уровня надежностн объектов на ранних стадиях нх проектнрования, когла отсутствует необходимая информация для применения друтнх методов расчета надежности;

Для расчета интенсивности отказов серийно выпускаемых и новых электронных и зсзектротехннческих злементов разных типов с учетом уровня нх нагруженности, качества изготовления, областей применения аппаратуры, в которой используются элементы;

Для расчета параметров типовых задач и операций технического обслуживания и ремонта объектов с учетом конструктивных характеристик обьекта, определяющих его ремонтопригодность.

Для прогнозирования надежности объектов применяют:

Методы эвристического прогнозирования (экспертной оценки);

Мелолы прогнозирования по статистическим моделям;

Комбинированные методы.

Методы эвристического прогнозирования основаны на статистический обработке независимых оценок значений ожидаемых показателей надежности разрлбатываемого объкта (иидивидуалыных прогнозов), даваемых группой квалифицированных (экспертов) на основе предоставленной им информации об объекте, услониях евго эксплуатации, планируемой технологии изготвления и другнх данных, имеющихся в момент проведения оценки. Опрос экспертов и статистическую обработку индивидуальных прогнозов показателей надежности проводят общепринятыми при экспертной оценке любых показателей качества методами (например, метод Дельфи).

М ет о д ы п р о г н о з и р о в а н и я п о статистическим моделям основаны на экстра- или интерполяции зависимостей, описывающих выявленные тенденции изменения показателей надежности объектов-аналогов с учетом их конструктивно-технологических особенностей и других факторов, информация о которых для разрабатываемого объекта изнесгна или может быть получена в момент проведения оценки. Модели для прогнозирования строят по данным о показателях надежности и параметрах объектов-аналогов с использованием известных статистических методов (многофакторного регрессионного анализа, методов статистической классификации и распознания образов).

Комбинированные методы основаны на совместном применении для прогнозирования надежности методов прогнозирования по статистическим моделям и эвристических методов с последующим сравнением результатов. При этом эвристические методы используют для оценкеи возможности экстраполяции статистических моделей и уточнения прогноза по ним показателей надежности. Применение комбинированных методов целесообразно в случаях, когда естъ основания ожидать качественных изменений уровня належности объектов, не отражаемых соответствующими статистическими моделями, или при недостаточном для применения только статистичеких методов числе объектов-аналогов.

  • 1.13. Показатели безопасности технических систем
  • § 2. Основные положения теории риска
  • 2.1. Понятие риска
  • 2.2. Развитие риска на промышленных объектах
  • 2.3. Основы методологии анализа и управления риском
  • 2.3.1. Анализ риска: понятие и место в обеспечении безопасности технических систем
  • 2.3.2. Оценка риска: понятие и место в обеспечении безопасности технических систем
  • 2.3.3. Управление риском: понятие и место в обеспечении безопасности технических систем
  • 2.3.4. Общность и различие процедур оценки и управления риском
  • 2.3.5. Количественные показатели риска
  • 2.4. Моделирование риска
  • 2.5. Принципы построения информационных технологий управления риском
  • § 3. Роль внешних факторов, воздействующих на формирование отказов технических систем
  • 3.1. Общие замечания
  • 3.2. Классификация внешних воздействующих факторов
  • 3.3. Воздействие температуры
  • 3.4. Воздействие солнечной радиации
  • 3.5. Воздействие влажности
  • 3.6. Воздействие давления
  • 3.7. Воздействие ветра и гололеда
  • 3.8. Воздействие примесей воздуха
  • 3.9. Воздействие биологических факторов
  • 3.10. Старение материалов
  • 3.11. Факторы нагрузки
  • § 4. Основны теории расчета надежности технических систем
  • 4.1. Основные понятия теории надежности
  • 4.2. Количественные характеристики надежности
  • 4.3. Теоретические законы распределения отказов
  • 4.4. Резервирование
  • 4.4.2. Способы структурного резервирования
  • 4.5. Основы расчета надежности технических систем по надежности их элементов
  • Надежность резервированной системы
  • Включение резервного оборудования системы замещением
  • Надежность резервированной системы в случае комбинаций отказов и внешних воздействий
  • Анализ надежности систем при множественных отказах
  • § 5. Методика исследования надежности технических систем
  • 5.1. Системный подход к анализу возможных отказов: понятие, назначение, цели и этапы, порядок, границы исследования
  • 5.2. Выявление основных опасностей на ранних стадиях проектирования
  • 5.3. Исследования в предпусковой период
  • 5.4. Исследования действующих систем
  • 5.5. Регистрация результатов исследования
  • 5.6. Содержание информационного отчета по безопасности процесса
  • § 6. Инженерные методы исследования безопасности технических систем
  • 6.1. Понятие и методология качественного и количественного анализа опасностей и выявления отказов систем
  • 6.2. Порядок определения причин отказов и нахождения аварийного события при анализе состояния системы
  • 6.3. Предварительный анализ опасностей
  • 6.4. Метод анализа опасности и работоспособности- аор (hazard and operability study - hazop)
  • 6.5. Методы проверочного листа (check-list) и "что будет если...?" ("what - if")
  • 6.6. Анализ вида и последствий отказа - авпо (failure mode and effects analysis - fmea)
  • 6.7. Анализ вида, последствий и критичности отказа- авпко (failure mode, effects and critical analysis - fmeca)
  • 6.8. Дерево отказов - до (fault tree analysis - fta)
  • 6.9. Дерево событий - дс (event tree analysis - еta)
  • 6.10. Дерево решений
  • 6.11. Логический анализ
  • 6.12. Контрольные карты процессов
  • 6.13. Распознавание образов
  • 6.14. Таблицы состояний и аварийных сочетаний
  • § 7. Оценка надежности человека как звена сложной технической системы
  • 7.1. Причины совершения ошибок
  • 7.2. Методология прогнозирования ошибок
  • 7.3. Принципы формирования баз об ошибках человека
  • § 8. Организация и проведение экспертизы технических систем
  • 8.1. Причины, задачи и содержание экспертизы
  • 8.2. Организация экспертизы
  • 8.3. Подбор экспертов
  • 8.4. Экспертные оценки
  • 8.5. Опрос экспертов
  • 8.6. Оценка согласованности суждений экспертов
  • 8.7. Групповая оценка и выбор предпочтительного решения
  • 8.8. Принятие решения
  • 8.9. Работа на завершающем этапе
  • § 9. Мероприятия, методы и средства обеспечения надежности и безопасности технических систем
  • 9.1. Стадия проектирования технических систем
  • 9.2. Стадия изготовления технических систем
  • 9.3. Стадия эксплуатации технических систем
  • 9.4. Техническая поддержка и обеспечение
  • 9.5. Технические средства обеспечения надежности и безопасности технических систем
  • 9.6. Организационно-управленческие мероприятия
  • 9.7. Диагностика нарушений и аварийных ситуаций в технических системах
  • 9.8. Алгоритм обеспечения эксплуатационной надежности технических систем
  • § 10. Технические системы безопасности
  • 10.1. Назначение и принципы работы защитных систем
  • 10.2. Типовые структуры и принципы функционирования автоматических систем защиты
  • 10.3. Автоматическая интеллектулизированная система защиты объекта и управления уровнем безопасности
  • 10.4. Типовые локальные технические системы и средства безопасности
  • § 11. Правовые аспекты анализа риска и управления промышленной безопасностью
  • 11.1. Классификация промышленных объектов по степени опасности
  • 11.2. Оценка опасности промышленного объекта
  • 11.3. Декларация безопасности опасного промышленного объекта
  • 11.4. Требования к размещению промышленного объекта
  • 11.5. Система лицензирования
  • 11.6. Экспертиза промышленной безопасности
  • 11.7. Информирование государственных органов и общественности об опасностях и авариях
  • 11.8. Ответственность производителей или предпринимателей за нарушения законодательства и нанесенный ущерб
  • 11.9. Учет и расследование
  • 11.10. Участие органов местного самоуправления и общественности в процессах обеспечения промышленной безопасности
  • 11.11. Государственный контроль и надзор за промышленной безопасностью
  • 11.13. Экономические механизмы регулирования промышленной безопасности
  • 11.14. Российское законодательство в области промышленной безопасности
  • § 12. Принципы оценки экономического ущерба от промышленных аварий
  • 12.1. Понятие ущерба и вреда. Структура вреда
  • 12.2. Экономический и экологический вред
  • 12.3. Принципы оценки экономического ущерба
  • 4.5. Основы расчета надежности технических систем по надежности их элементов

    Целевое назначение и классификация методов расчета

    Расчеты надежности - расчеты, предназначенные для определения количественных показателей надежности. Они проводятся на различных этапах разработки, создания и эксплуатации объектов.

    На этапе проектирования расчет надежности производится с целью прогнозирования (предсказания) ожидаемой надежности проектируемой системы. Такое прогнозирование необходимо для обоснования предполагаемого проекта, а также для решения организационно-технических вопросов:

    Выбора оптимального варианта структуры;

    Способа резервирования;

    Глубины и методов контроля;

    Количества запасных элементов;

    Периодичности профилактики.

    На этапе испытаний и эксплуатации расчеты надежности проводятся для оценки количественных показателей надежности. Такие расчеты носят, как правило, характер констатации. Результаты расчетов в этом случае показывают, какой надежностью обладали объекты, прошедшие испытания или используемые в некоторых условиях эксплуатации. На основании этих расчетов разрабатываются меры по повышению надежности, определяются слабые места объекта, даются оценки его надежности и влияния на нее отдельных факторов.

    Многочисленные цели расчетов привели к большому их разнообразию. На рис. 4.5.1 изображены основные виды расчетов.

    Элементный расчет - определение показателей надежности объекта, обусловленных надежностью его комплектующих частей (элементов). В результате такого расчета оценивается техническое состояние объекта (вероятность того, что объект будет находиться в работоспособном состоянии, средняя наработка на отказ и т.п.).

    Рис. 4.5.1. Классификация расчетов надежности

    Расчет функциональной надежности - определение показателей надежности выполнения заданных функций (например, вероятность того, что система очистки газа будет работать заданное время, в заданных режимах эксплуатации с сохранением всех необходимых параметров по показателям очистки). Поскольку такие показатели зависят от ряда действующих факторов, то, как правило, расчет функциональной надежности более сложен, чем элементный расчет.

    Выбирая на рис 4.5.1 варианты перемещений по пути, указанному стрелками, каждый раз получаем новый вид (случай) расчета.

    Самый простой расчет - расчет, характеристики которого представлены на рис. 4.5.1 слева: элементный расчет аппаратурной надежности простых изделий, нерезервированных, без учета восстановлений работоспособности при условии, что время работы до отказа подчинено экспоненциальному распределению.

    Самый сложный расчет - расчет, характеристики которого представлены на рис. 4.5.1 справа: функциональной надежности сложных резервированных систем с учетом восстановления их работоспособности и различных законов распределения времени работы и времени восстановления.

    Выбор того или иного вида расчета надежности определяется заданием на расчет надежности. На основании задания и последующего изучения работы устройства (по его техническому описанию) составляется алгоритм расчета надежности, т.е. последовательность этапов расчета и расчетные формулы.

    Последовательность расчета систем

    Последовательность расчета системы представлена на рис. 4.5.2. Рассмотрим основные ее этапы.

    Рис. 4.5.2. Алгоритм расчета надежности

    Прежде всего четко следует сформулировать задание на расчет надежности. В нем должны быть указаны: 1) назначение системы ее состав и основные сведения о функционировании; 2) показатели надежности и признаки отказов, целевое назначение расчетов; 3) условия, в которых работает (или будет работать) система; 4) требования к точности и достоверности расчетов, к полноте учета действующих факторов.

    На основании изучения задания делается вывод о характере предстоящих расчетов. В случае расчета функциональной надежности осуществляется переход к этапам 4-5-7, в случае расчета элементов (аппаратурной надежности) - к этапам 3-6-7.

    Под структурной схемой надежности понимается наглядное представление (графическое или в виде логических выражений) условий, при которых работает или не работает исследуемый объект (система, устройство, технический комплекс и т.д.). Типовые структурные схемы представлены на рис. 4.5.3.

    Рис. 4.5.3. Типовые структуры расчета надежности

    Простейшей формой структурной схемы надежности является параллельно-последовательная структура. На ней параллельно соединяются элементы, совместный отказ которых приводит к отказу.

    В последовательную цепочку соединяются такие элементы, отказ любого из которых приводит к отказу объекта.

    На рис. 4.5.3,а представлен вариант параллельно-последовательной структуры. По этой структуре можно сделать следующее заключение. Объект состоит из пяти частей. Отказ объекта наступает тогда, когда откажет или элемент 5, или узел, состоящий из элементов 1-4. Узел может отказать тогда, когда одновременно откажет цепочка, состоящая из элементов 3,4 и узел, состоящий из элементов 1,2. Цепь 3-4 отказывает, если откажет хотя бы один из составляющих ее элементов, а узел 1,2 - если откажут оба элемента, т.е. элементы 1,2. Расчет надежности при наличии таких структур отличается наибольшей простотой и наглядностью. Однако не всегда удается условие работоспособности представить в виде простой параллельно-последовательной структуры. В таких случаях используют или логические функции, или графы и ветвящиеся структуры, по которым оставляются системы уравнений работоспособности.

    На основе структурной схемы надежности составляется набор расчетных формул. Для типовых случаев расчета используются формулы, приведенные в справочниках по расчетам надежности, стандартах и методических указаниях. Прежде чем применять эти формулы, необходимо предварительно внимательно изучить их существо и области использования.

    Расчет надежности, основанный на использовании параллельно-последовательных структур

    Пусть некоторая техническая система D составлена из n элементов (узлов). Допустим, надежности элементов нам известны. Возникает вопрос об определении надежности системы. Она зависит от того, каким образом элементы объединены в систему, какова функция каждого из них и в какой мере исправная работа каждого элемента необходима для работы системы в целом.

    Параллельно-последовательная структура надежности сложного изделия дает представление о связи между надежностью изделия и надежностью его элементов. Расчет надежности ведется последовательно - начиная от расчета элементарных узлов структуры к ее все более сложным узлам. Например, в структуре рис. 5.3,а узел, состоящий из элементов 1-2 - элементарный узел, состоящий из элементов 1-2-3-4, сложный. Эта структура может быть сведена к эквивалентной, состоящей из элементов 1-2-3-4 и элемента 5, соединенных последовательно. Расчет надежности в данном случае сводится к расчету отдельных участков схемы, состоящих из параллельно и последовательно соединенных элементов.

    Система с последовательным соединением элементов

    Самым простым случаем в расчетном смысле является последовательное соединение элементов системы. В такой системе отказ любого элемента равносилен отказу системы в целом. По аналогии с цепочкой последовательно соединенных проводников, обрыв каждого из которых равносилен размыканию всей цепи, мы и называем такое соединение "последовательным" (рис. 4.5.4). Следует пояснить, что "последовательным" такое соединение элементов является только в смысле надежности, физически они могут быть соединены как угодно.

    Рис. 4.5.4. Блок-схема системы с последовательным соединением элементов

    С позиции надежности, такое соединение означает, что отказ устройства, состоящего из этих элементов, происходит при отказе элемента 1 или элемента 2, или элемента 3, или элемента n. Условие работоспособности можно сформулировать следующим образом: устройство работоспособно, если работоспособен элемент 1 и элемент 2, и элемент 3, и элемент n.

    Выразим надежность данной системы через надежности ее элементов. Пусть имеется некоторый промежуток времени (0,τ), в течение которого требуется обеспечить безотказную работу системы. Тогда, если надежность системы характеризуется законом надежности Р(t), нам важно знать значение этой надежности при t=τ, т.е. Р(τ). Это не функция, а определенное число; отбросим аргументτи обозначим надежность системы просто Р. Аналогично обозначим надежности отдельных элементов P 1 , P 2 , P 3 , ..., P n .

    Для безотказной работы простой системы в течение времени τнужно, чтобы безотказно работал каждый из ее элементов. Обозначим S - событие, состоящее в безотказной работе системы за времяτ; s 1 , s 2 , s 3 , ..., s n - события, состоящие в безотказной работе соответствующих элементов. Событие S есть произведение (совмещение) событий s 1 , s 2 , s 3 , ..., s n:

    S=s 1 ×s 2 ×s 3 ×...×s n .

    Предположим, что элементы s 1 , s 2 , s 3 , ..., s n отказывают независимо друг от друга (или, как говорят применительно к надежности, "независимы по отказам", а совсем кратко "независимы"). Тогда по правилу умножения вероятностей для независимых событий Р(S)=P(s 1)×P(s 2)×P(s 3)×...×P(s n) или в других обозначениях,

    Р = Р 1 ×Р 2 ×Р 3 ×...×Р n ., (4.5.1)

    а короче P= , (4.5.2)

    т.е. надежность (вероятность работоспособного состояния) простой системы, составленной из независимых по отказам, последовательно соединенных элементов, равна произведению надежностей ее элементов.

    В частном случае, когда все элементы обладают одинаковой надежностью P 1 =P 2 =P 3 = ... =P n , выражение (4.5.2) принимает вид

    Р = P n . (4.5.3)

    Пример 4.5.1. Система состоит из 10 независимых элементов, надежность каждого из которых равна Р=0,95. Определить надежность системы.

    По формуле (4.5.3) Р = 0,95 10 »0,6.

    Из примера видно, как резко падает надежность системы при увеличении в ней числа элементов. Если число элементов n велико, то для обеспечения хотя бы приемлемой надежности Р системы каждый элемент должен обладать очень высокой надежностью.

    Поставим вопрос: какой надежностью Р должен обладать отдельный элемент для того, чтобы система, составленная из n таких элементов, обладала заданной надежностью Р?

    Из формулы (4.5.3) получим:

    Пример 4.5.2. Простая система состоит из 1000 одинаково надежных, независимых элементов. Какой надежностью должен обладать каждый из них для того, чтобы надежность системы была не меньше 0,9?

    По формуле (4.5.4) Р = ;lgР =lg0,9 1/1000 ; Р»0,9999.

    Интенсивность отказов системы при экспоненциальном законе распределения времени до отказа легко определить из выражения

    λ с =λ 1 +λ 2 +λ 3 + ... +λ n , (4.5.4)

    т.е. как сумму интенсивностей отказов независимых элементов. Это и естественно, так как для системы, в которой элементы соединены последовательно, отказ элемента равносилен отказу системы, значит все потоки отказов отдельных элементов складываются в один поток отказов системы с интенсивностью, равной сумме интенсивностей отдельных потоков.

    Формула (4.5.4) получается из выражения

    Р = P 1 P 2 P 3 ...P n = ехр{-(λ 1 +λ 2 +λ 3 + ... +λ n)}. (4.5.5)

    Среднее время работы до отказа

    Т 0 = 1/λ с. (4.5.6)

    Пример 4.5.3. Простая система S состоит из трех независимых элементов, плотности распределения времени безотказной работы которых заданы формулами:

    при 0 < t < 1 (рис. 4.5.5).

    Рис. 4.5.5. Плотности распределения времени безотказной работы

    Найти интенсивность отказов системы.

    Решение. Определяем ненадежность каждого элемента:

    при 0

    Отсюда надежности элементов:

    при 0

    Интенсивности отказов элементов (условная плотность вероятности отказов) - отношение f(t) к р(t):

    при 0

    Складывая, имеем: λ с =λ 1 (t) +λ 2 (t) +λ 3 (t).

    Пример 4.5.4. Предположим, что для работы системы с последовательным соединением элементов при полной нагрузке необходимы два разнотипных насоса, причем насосы имеют постоянные интенсивности отказов, равные соответственно λ 1 =0,0001ч -1 иλ 2 =0,0002ч -1 . Требуется вычислить среднее время безотказной работы данной системы и вероятность ее безотказной работы в течение 100ч. Предполагается, что оба насоса начинают работать в момент времениt=0.

    С помощью формулы (4.5.5) находим вероятность безотказной работы P s заданной системы в течение 100ч:

    P s (100)=е -(0,0001+0,0002) × 100 =0,97045.

    Используя формулу (4.5.6), получаем

    ч.

    Система с параллельным соединением элементов

    На рис. 4.5.6 представлено параллельное соединение элементов 1, 2, 3. Это означает, что устройство, состоящее из этих элементов, переходит в состояние отказа после отказа всех элементов при условии, что все элементы системы находятся под нагрузкой, а отказы элементов статистически независимы.

    Рис. 4.5.6. Блок-схема системы с параллельным соединением элементов

    Условие работоспособности устройства можно сформулировать следующим образом: устройство работоспособно, если работоспособен элемент 1 или элемент 2, или элемент 3, или элементы 1 и 2, 1; и 3, 2; и 3, 1; и 2; и 3.

    Вероятность безотказного состояния устройства, состоящего из n параллельно соединенных элементов определяется по теореме сложения вероятностей совместных случайных событий как

    Р=(р 1 +р 2 +...р n)-(р 1 р 2 +р 1 р 3 +...)-(р 1 р 2 р 3 +р 1 р 2 р n +...)-...±(р 1 р 2 р 3 ...р n). (4.5.7)

    Для приведенной блок-схемы (рис. 4.5.6), состоящей из трех элементов, выражение (4.5.7) можно записать:

    Р=р 1 +р 2 +р 3 -(р 1 р 2 +р 1 р 3 +р 2 р 3)+р 1 р 2 р 3 .

    Применительно к проблемам надежности, по правилу умножения вероятностей независимых (в совокупности) событий, надежность устройства из n элементов вычисляется по формуле

    Р = 1- , (4.5.8)

    т.е. при параллельном соединении независимых (в смысле надежности) элементов их ненадежности (1-p i =q i) перемножаются.

    В частном случае, когда надежности всех элементов одинаковы, формула (4.5.8) принимает вид

    Р = 1 - (1-р) n . (4.5.9)

    Пример 4.5.5. Предохранительное устройство, обеспечивающее безопасность работы системы под давлением, состоит из трех дублирующих друг друга клапанов. Надежность каждого из них р=0,9. Клапаны независимы в смысле надежности. Найти надежность устройства.

    Решение. По формуле (4.5.9) Р=1-(1-0,9) 3 =0,999.

    Интенсивность отказов устройства состоящего из n параллельно соединенных элементов, обладающих постоянной интенсивностью отказов λ 0 , определяется как

    Из (4.5.10) видно, что интенсивность отказов устройства при n>1 зависит от t: при t=0 она равна нулю, при увеличении t, монотонно возрастает до λ 0 .

    Если интенсивности отказов элементов постоянны и подчинены показательному закону распределения, то выражение (4.5.8) можно записать

    Р(t) = . (4.5.11)

    Среднее время безотказной работы системы Т 0 находим, интегрируя уравнение (4.5.11) в интервале :

    Т 0 =

    =(1/ λ 1 +1/λ 2 +…+1/λ n)-(1/(λ 1 +λ 2)+ 1/(λ 1 +λ 3)+…)+ (4.5.12)

    +(1/(λ 1 + λ 2 + λ 3)+1/(λ 1 + λ 2 + λ 4)+…)+(-1) n +1 ´ .

    В случае, когда интенсивности отказов всех элементов одинаковы, выражение (4.5.12) принимает вид

    Т 0 = . (4.5.13)

    Среднее время работы до отказа также можно получить, интегрируя уравнение (4.5.7) в интервале

    Пример 4.5.6. Предположим, что два одинаковых вентилятора в системе очистки отходящих газов работают параллельно, причем если один из них выходит из строя, то другой способен работать при полной системной нагрузке без изменения своих надежностных характеристик.

    Требуется найти безотказность системы в течение 400ч (продолжительность выполнения задания) при условии, что интенсивности отказов двигателей вентиляторов постоянны и равны λ=0,0005ч -1 , отказы двигателей статистически независимы и оба вентилятора начинают работать в момент времени t=0.

    Решение. В случае идентичных элементов формула (4.5.11) принимает вид

    Р(t) = 2еxp(-λt) - еxp(-2λt).

    Поскольку λ= 0,0005 ч -1 и t = 400 ч, то

    Р (400) = 2еxp(-0,0005´400) - еxp(-2´0,0005´400)=0,9671.

    Среднюю наработку на отказ находим, используя (4.5.13):

    Т 0 = 1/λ(1/1 + 1/2) = 1/λ´3/2 = 1,5/0,0005 = 3000 ч.

    Способы преобразования сложных структур

    Относительная простота расчетов надежности, основанных на использовании параллельно-последовательных структур, делают их самыми распространенными в инженерной практике. Однако не всегда условие работоспособности можно непосредственно представить параллельно-последовательной структурой. В этом случае можно сложную структуру заменить ее эквивалентной параллельно-последовательной структурой. К таким преобразованиям относится:

    Преобразование с эквивалентной заменой треугольника на звезду и обратно;

    Разложение сложной структуры по базовому элементу.

    Существо способа преобразования с помощью эквивалентной замены треугольника на звезду и обратно заключается в том, что узел сложной конфигурации заменяется на узел другой, более простой конфигурации, но при этом подбираются такие характеристики нового узла, что надежности преобразуемой цепи сохранялись прежними.

    Пусть, например, требуется заменить треугольник (рис. 4.5.7,а) звездой (рис. 4.5.7,б) при условии, что вероятность отказа элемента a равна q 13 , элементаb равна q 12 , элементаc - q 23 . Переход к соединению звездой не должен изменить надежность цепей 1-2, 1-3, 2-3. Поэтому значение вероятностей отказов элементов звезды q 1 , q 2 , q 3 должны удовлетворять следующим равенствам: (4.5.14)

    Рис. 4.5.7. Преобразование "треугольник - звезда"

    Если пренебречь произведениями вида q i q j ; q i q j q k , то в результате решения системы уравнения (4.5.14) можно записать:

    q 1 =q 12 q 31 ; q 2 =q 23 q 12 ; q 3 =q 31 q 23 . (4.5.15)

    Для обратного преобразования звезды в треугольник

    q 12 = ; q 23 = ; q 31 = . (4.5.16)

    Пример 4.5.7. Определить вероятность безотказной работы устройства, структурная схема которого изображена на рис. 4.5.3,б, если известно, что вероятности безотказной работы каждого из элементов схемы равны 0,9, а вероятности отказов равны 0,1.

    1. Преобразуем соединение элементов 1,2,5 в треугольник (рис. 4.5.8,а), в звезду (рис. 4.5.8, б).

    Рис. 4.5.8. К примеру преобразования структуры

    2. Определим эквивалентные значения вероятности отказов для новых элементов a, b, c

    q a =q 1 q 2 =0,1´0,1 = 0,01;

    q b =q 1 q 5 =0,1´0,1 = 0,01;

    q с =q 2 q 5 =0,1´0,1 = 0,01.

    3. Определим значения вероятности безотказного состояния элементов эквивалентной схемы (рис. 4.5.8,б)

    p a = p b = p c = 0,99.

    4. Определим вероятность безотказной работы эквивалентного устройства (рис. 4.5.9):

    Р = р a (р b р 3 + р c р 4 - р b р 3 р c р 4) =

    0,99(0,99´0,9+0,99´0,9 - 0,99´0,9´0,99´0,9) = 0,978.

    Рис. 4.5.9. Преобразованная структура

    Способ преобразования с помощью разложения сложной структуры по некоторому базовому элементу основан на использовании теоремы о сумме вероятностей несовместных событий. В сложной структуре выбирают базовый элемент (или группу базовых элементов) и делаются следующие допущения:

    Базовый элемент находится в работоспособном состоянии;

    Базовый элемент находится в отказавшем состоянии.

    Для этих случаев, представляющих собой два несовместных события, исходная структура преобразовывается в две новые схемы. В первой из них вместо базового элемента ставится "короткое замыкание" цепи, а во второй - разрыв. Вероятности безотказной работы каждой из полученных простых структур вычисляются и умножаются: первая - на вероятность безотказного состояния базового элемента, вторая - на вероятность отказа базового элемента. Полученные произведения складываются. Сумма равна искомой вероятности безотказной работы сложной структуры.

    Пример 4.5.8. Решить предыдущий пример методом разложения сложной структуры.

    1. В качестве базового элемента примем элемент 5 (рис. 4.5.3,б).

    2. Закоротим базовый элемент, т.е. сделаем допущение об абсолютной его проводимости. Присоединим к полученной структуре последовательно базовый элемент с характеристикой его надежности р 5 . В результате вместо исходной структуры получим новую структуру (рис. 4.5.10,а).

    Рис. 4.5.10. Пример разложения мостиковой структуры по базовому элементу

    3. Произведем обрыв базового элемента, т.е. сделаем предположение об его абсолютной ненадежности (непроводимости). К полученной структуре присоединим последовательно базовый элемент с характеристикой его ненадежности (1-р 5). В результате получим структуру (рис. 4.5.10,б).

    4. Искомая вероятность равна сумме вероятностей структур (рис. 4.5.10,а,б), каждая из которых параллельно-последовательная. Поэтому

    Р = р 5 [(р 1 +р 2 -р 1 р 2)(р 3 +р 4 -р 3 р 4)] + (1-р 5)[р 1 р 3 +р 2 р 4 -р 1 р 3 р 2 р 4 ]=

    0,9[(0,9+0,9 - 0,9´0,9) ´ (0,9+0,9 - 0,9´0,9)] +

    + (1-0,9) ´ »0,978.

    Вероятность безотказной работы мостиковой схемы, состоящей из пяти неодинаковых и независимых элементов, можно определить по формуле:

    Р=2р 1 р 2 р 3 р 4 р 5 -р 2 р 3 р 4 р 5 -р 1 р 3 р 4 р 5 -р 1 р 2 р 4 р 5 -р 1 р 2 р 3 р 5 -

    Р 1 р 2 р 3 р 4 +р 1 р 3 р 5 +р 2 р 3 р 4 +р 1 р 4 +р 2 р 5 . (4.5.17)

    В случае идентичных элементов эта формула принимает вид

    Р = 2р 5 -5р 4 +2р 3 +2р 2 . (4.5.18)

    Подставляя соотношение (4.5.18) в формулу (4.5.4), получаем, что в случае использования элементов с постоянной интенсивностью отказов (экспоненциальном законе распределения отказов)

    Р(t ) = 2ехр(-5 λ t )-5ехр(-4 λ t )+2ехр(-3 λ t )+2ехр(-2 λ t ). (4.5.19)

    Среднее время безотказной работы системы Т 0 находим, путем интегрирования уравнения (5.19) в интервале :

    Т 0 = 2ехр(-5λt)-5ехр(-4λt)+2ехр(-3λt)+2ехр(-2λt)dt=

    = (49/60)´(1/λ). (4.5.20)

    Пример 4.5.9. Определить вероятность безотказной работы устройства, структурная схема которого изображена на рис. 4.5.3,б, если известно, что вероятности безотказной работы каждого из элементов схемы равны 0,9.

    Так как все элементы идентичны, воспользуемся формулой (4.5.18); с ее помощью получаем:

    Р = 2´0,9 5 - 5´0,9 4 +2´0,9 3 + 2´0,9 2 »0,978.

    Пример 4.5.10. Требуется определить вероятность безотказной работы и среднюю наработку на отказ системы, состоящей из пяти независимых и одинаковых элементов, соединенных по мостиковой схеме (рис. 4.5.3,б); считается, что λ=0,0005ч -1 , t=100ч и все элементы начинают работать в момент времени t=0.

    Введение

    1. Количественные характеристики безотказности

    2. Структурно - логический анализ технических систем

    3. Расчеты структурной надежности систем

    3.1. Системы с последовательным соединением элементов

    3.2. Системы с параллельным соединением элементов

    3.3. Системы типа “m из n “

    3.4. Мостиковые системы

    3.5. Комбинированные системы

    4. Повышение надежности технических систем

    4.2. Расчет надежности систем c резервированием

    6. Исходные данные к работе

    7. Пример расчета надежности

    Приложение

    Литература


    ВВЕДЕНИЕ

    Надежностью называют свойство объекта сохранять во времени в установленных пределах значения всех параметров, характеризующих способность выполнять требуемые функции в заданных режимах и условиях применения, технического обслуживания, ремонтов, хранения и транспортировки. Расширение условий эксплуатации, повышение ответственности выполняемых радиоэлектронными средствами (РЭС) функций, их усложнение приводит к повышению требований к надежности изделий.

    Надежность является сложным свойством, и формируется такими составляющими, как безотказность, долговечность, восстанавливаемость и сохраняемость. Основным здесь является свойство безотказности - способность изделия непрерывно сохранять работоспособное состояние в течение времени. Потому наиболее важным в обеспечении надежности РЭС является повышение их безотказности.

    Особенностью проблемы надежности является ее связь со всеми этапами “жизненного цикла” РЭС от зарождения идеи создания до списания: при расчете и проектировании изделия его надежность закладывается в проект, при изготовлении надежность обеспечивается, при эксплуатации - реализуется. Поэтому проблема надежности - комплексная проблема и решать ее необходимо на всех этапах и разными средствами. На этапе проектирования изделия определяется его структура, производится выбор или разработка элементной базы, поэтому здесь имеются наибольшие возможности обеспечения требуемого уровня надежности РЭС. Основным методом решения этой задачи являются расчеты надежности (в первую очередь - безотказности), в зависимости от структуры объекта и характеристик его составляющих частей, с последующей необходимой коррекцией проекта. Некоторые способы расчета структурной надежности рассматриваются в данном пособии.


    1. КОЛИЧЕСТВЕННЫЕ ХАРАКТЕРИСТИКИ БЕЗОТКАЗНОСТИ


    Безотказность (и другие составляющие свойства надежности) РЭС проявляется через случайные величины: наработку до очередного отказа и количество отказов за заданное время. Поэтому количественными характеристиками свойства здесь выступают вероятностные переменные.

    Наработка есть продолжительность или объем работы объекта. Для РЭС естественно исчисление наработки в единицах времени, тогда как для других технических средств могут быть удобнее иные средства измерения (например, наработка автомобиля - в километрах пробега). Для невосстанавливаемых и восстанавливаемых изделий понятие наработки различается: в первом случае подразумевается наработка до первого отказа (он же является и последним отказом), во втором - между двумя соседними во времени отказами (после каждого отказа производится восстановление работоспособного состояния). Математическое ожидание случайной наработки Т

    (1.1)

    является характеристикой безотказности и называется средней наработкой на отказ (между отказами). В (1.1) через t обозначено текущее значение наработки, а f(t ) - плотность вероятности ее распределения.

    Вероятность безотказной работы - вероятность того, что в пределах заданной наработки t отказ объекта не возникнет:

    (1.2)

    Вероятность противоположного события называется вероятностью отказа и дополняет вероятность безотказной работы до единицы:

    (1.3)

    В (1.2) и (1.3) F(t ) есть интегральная функция распределение случайной наработки t . Плотность вероятности f(t ) также является показателем надежности, называемым частотой отказов :

    (1.4)

    Из (1.4) очевидно, что она характеризует скорость уменьшения вероятности безотказной работы во времени.

    Интенсивностью отказов называют условную плотность вероятности возникновения отказа изделия при условии, что к моменту t отказ не возник:

    (1.5)

    Функции f(t) и

    (t) измеряются в ч.

    Интегрируя (1.5), легко получить:

    (1.6)

    Это выражение, называемое основным законом надежности, позволяет установить временное изменение вероятности безотказной работы при любом характере изменения интенсивности отказов во времени. В частном случае постоянства интенсивности отказов

    (t ) == const (1.6) переходит в известное в теории вероятностей экспоненциальное распределение: }. (1.7)

    Поток отказов при

    (t )=const называется простейшим и именно он реализуется для большинства РЭС в течении периода нормальной эксплуатации от окончания приработки до начала старения и износа.

    Подставив выражение плотности вероятности f(t ) экспоненциального распределения (1.7) в (1.1), получим:

    (1.8)

    т.е. при простейшем потоке отказов средняя наработка Т 0 обратна интен-сивности отказов

    . С помощью (1.7) можно показать, что за время средней наработки, t=T 0 , вероятность безотказной работы изделия составляет 1/е. Часто используют характеристику, называемую - процентной наработкой - время, в течении которого отказ не наступит с вероятностью (%): (1.9)

    Выбор параметра для количественной оценки надежности определяется назначением, режимами работы изделия, удобством применения в расчетах на стадии проектирования.


    2. СТРУКТУРНО - ЛОГИЧЕСКИЙ АНАЛИЗ ТЕХНИЧЕСКИХ СИСТЕМ


    Конечной целью расчета надежности технических устройств является оптимизация конструктивных решений и параметров, режимов эксплуатации, организация технического обслуживания и ремонтов. Поэтому уже на ранних стадиях проектирования важно оценить надежность объекта, выявить наиболее ненадежные узлы и детали, определить наиболее эффективные меры повышения показателей надежности. Решение этих задач возможно после пред- варительного структурно - логического анализа системы.

    Большинство технических объектов, в том числе РЭС, являются сложными системами, состоящими из отдельных узлов, деталей, агрегатов, устройств контроля, управления и т.д.. Техническая система (ТС) - совокупность технических устройств (элементов), предназначенных для выполнения определенной функции или функций. Соответственно, элемент - составная часть системы.

    Расчленение ТС на элементы достаточно условно и зависит от постановки задачи расчета надежности. Например при анализе работоспособности технологической линии ее элементами могут считаться отдельные установки и станки, транспортные и загрузочные устройства и т.д.. В свою очередь станки и устройства также могут считаться техническими системами и при оценке их надежности должны быть разделены на элементы - узлы, блоки, которые, в свою очередь - на детали и т.д..

    При определении структуры ТС в первую очередь необходимо оценить влияние каждого элемента и его работоспособности на работоспособность системы в целом. С этой точки зрения целесообразно разделить все элементы на четыре группы:

    1. Элементы, отказ которых практически не влияет на работоспособность системы (например, деформация кожуха, изменение окраски поверхности и т.п.).

    2. Элементы, работоспособность которых за время эксплуатации практически не изменяется и вероятность безотказной работы близка к единице (корпусные детали, малонагруженные элементы с большим запасом прочности).

    3. Элементы, ремонт или регулировка которых возможна при работе изделия или во время планового технического обслуживания (наладка или замена технологического инструмента оборудования, настройка частоты селек-тивных цепей РЭС и т.д.).

    4. Элементы, отказ которых сам по себе или в сочетании с отказами других элементов приводит к отказу системы.

    Очевидно, при анализе надежности ТС имеет смысл включать в рас-смотрение только элементы последней группы.

    Для расчетов параметров надежности удобно использовать структурно - логические схемы надежности ТС, которые графически отображают взаимосвязь элементов и их влияние на работоспособность системы в целом. Структурно - логическая схема представляет собой совокупность ранее выделенных элементов, соединенных друг с другом последовательно или параллельно. Критерием для определения вида соединения элементов (последовательного илипараллельного) при построении схемы является влияние их отказа на работоспособность ТС.

    Последовательным (с точки зрения надежности) считается соединение, при котором отказ любого элемента приводит к отказу всей системы (рис. 2.1).

    Параллельным (с точки зрения надежности) считается соединение, при котором отказ любого элемента не приводит к отказу системы, пока не откажут все соединенные элементы (рис. 2.2).



    Определенная аналогия здесь прослеживается с цепью, составленной из проводящих элементов (исправный элемент пропускает ток, отказавший не пропускает): работоспособному состоянию ТС соответствует возможность протекания тока от входа до выхода цепи.

    Примером последовательного соединения элементов структурно - логической схемы может быть технологическая линия, в которой происходит переработка сырья в готовый продукт, или РЭС, в котором последовательно осуществляется преобразование входного сигнала. Если же на некоторых участках линии, или пути сигнала, предусмотрена одновременная обработка на нескольких единицах оборудования, то такие элементы (единицы оборудова-ния) могут считаться соединенными параллельно.

    Однако не всегда структурная схема надежности аналогична конструктив-ной или электрической схеме расположения элементов. Например, подшипники на валу редуктора работают конструктивно параллельно друг с другом, однако выход из строя любого из них приводит к отказу системы. Аналогично дейст-вие индуктивности и емкости параллельного колебательного контура в селективных каскадах РЭС. Указанные элементы с точки зрения надежности образуют последовательное соединение.

    Кроме того, на структуру схемы надежности может оказывать влияние и вид возникающих отказов. Например, в электрических системах для повыше-ния надежности в ряде случаев применяют параллельное или последовательное соединение коммутирующих элементов (рис. 2.3). Отказ таких изделий может происходить по двум причинам: обрыва (т.е. невозможности замыкания цепи) и замыкания (т.е. невозможности разрыва соединения). В случае отказа типа “обрыв” схема надежности соответствует электрической схеме системы (при “обрыве” любого коммутатора при последовательном их соединении возникает отказ, при параллельном - все функции управления будет выполнять исправный коммутатор). В случае отказа типа “замыкание” схема надежности противоположна электрической (в параллельном включении утратится возможность отк-лючения тока, а в последовательном общего отказа не происходит).


    Электрическая схема



    обрыв замыкание



    Структурная схема надежности при отказе типа



    Рис. 2.3. Электрические и структурные схемы соединения коммутационных элементов при различных видах отказов


    В целом анализ структурной надежности ТС, как правило, включает следующие операции:

    1. Анализируются устройства и выполняемые системой и ее составными частями функции, а также взаимосвязь составных частей.

    2. Формируется содержание понятия “безотказной работы” для данной конкретной системы.

    3. Определяются возможные отказы составных частей и системы, их причины и возможные последствия.

    4. Оценивается влияние отказов составных частей системы на ее работоспособность.

    5. Система разделяется на элементы, показатели надежности которых известны.

    6. Составляется структурно - логическая схема надежности технической системы, которая является моделью ее безотказной работы.

    7. Составляются расчётные зависимости для определения показателей надёжности ТС с использованием данных по надежности её элементов и с учётом структурной схемы.

    В зависимости от поставленной задачи на основании результатов расчета характеристик надежности ТС делаются выводы и принимаются решения о необходимости изменения или доработки элементной базы, резервировании отдельных элементов или узлов, об установлении определенного режима профилактического обслуживания, о номенклатуре и количестве запасных элементов для ремонта и т.д..


    3. РАСЧЕТЫ СТРУКТУРНОЙ НАДЕЖНОСТИ СИСТЕМ


    Расчеты показателей безотказности ТС обычно проводятся в предпо-ложении, что как вся система, так и любой ее элемент могут находиться только в одном из двух возможных состояний - работоспособном и неработоспособном и отказы элементов независимы друг от друга. Состояние системы (рабо-тоспособное или неработоспособное) определяется состоянием элементов и их сочетанием. Поэтому теоретически возможно расчет безотказности любой ТС свести к перебору всех возможных комбинаций состояний элементов, определению вероятности каждого из них и сложению вероятностей рабо-тоспособных состояний системы.

    Такой метод (метод прямого перебора - см. п. 3.3) практически универсален и может использоваться при расчете любых ТС. Однако при большом количестве элементов системы n такой путь становится нереальным из-за большого объема вычислений (например, при n=10 число возможных состояний системы составляет,

    = 1024, при n=20 превышает , при n=30 -более ). Поэтому на практике используют более эффективные и экономичные методы расчета, не связанные с большим объемом вычислений. Возможность применения таких методов связана со структурой ТС.

    3.1. Системы с последовательным соединением элементов


    Системой с последовательным соединением элементов называется система, в которой отказ любого элемента приводит к отказу всей системы (см. п. 2, рис 2.1). Такое соединение элементов в технике встречается наиболее часто, поэтому его называют основным соединением .

    В системе с последовательным соединением для безотказной работы в течении некоторой наработки t необходимо и достаточно, чтобы каждый из ее n элементов работал безотказно в течении этой наработки. Считая отказы элементов независимыми, вероятность одновременной безотказной работы n элементов определяется по теореме умножения вероятностей: вероятность совместного появления независимых событий равна произведению вероятностей этих событий:

    (3.1) (3.2)

    Если система состоит из равнонадёжных элементов (

    ), то (3.3)

    Из формул (3.1) - (3.3) очевидно, что даже при высокой надежности элементов надежность системы при последовательном соединении оказывается тем более низкой, чем больше число элементов (например, при

    и имеем , при , а при ). Кроме того, поскольку все сомножителив правой части выражения (3.1) не превышают единицы, вероятность безотказной работы ТС при последовательном соединении не может быть выше вероятности безотказной работы самого ненадежного из ее элементов (принцип “хуже худшего”) и из малонадежных элементов нельзя создать высоконадежной ТС с последовательным соединением.

    Если все элементы системы работают в периоде нормальной эксплуа-тации и имеет место простейший поток отказов (см. п. 1), наработки элементов и системы подчиняются экспоненциальному распределению (1.7) и на основании (3.1) можно записать

    (3.4) (3.5)

    есть интенсивность отказов системы. Таким образом, интенсивность отказов системы при последовательном соединении элементов и простейшем потоке отказов равна сумме интенсивностей отказов элементов. С помощью выраже-ний (1.8) и (1.9) могут быть определены средняя и

    - процентная наработки.

    Из (3.4) - (3.5) следует, что для системы из n равнонадёжных элементов(

    ) (3.6)

    т.е. интенсивность отказов в n раз больше, а средняя наработка в n раз меньше, чем у отдельного элемента.


    3.2. Системы с параллельным соединением элементов


    Системой с параллельным соединением элементов называется система, отказ которой происходит только в случае отказа всех ее элементов (см. п. 2, рис. 2.2). Такие схемы надежности характерны для ТС, в которых элементы дублируются или резервируются, т.е. параллельное соединение используется как метод повышения надежности (см. п. 4.2). Однако такие системы встречаются и самостоятельно (например, системы двигателей четырехмоторного самолета или параллельное включение диодов в мощных выпрямителях).

    Для отказа системы с параллельным соединением элементов в течение наработки t необходимо и достаточно, чтобы все ее элементы отказали в течение этой наработки. Так что отказ системы заключается в совместном отказе всех элементов, вероятность чего (при допущении независимости отказов) может быть найдена по теореме умножения вероятностей как произведение вероятностей отказа элементов:

    (3.7)

    Соответственно, вероятность безотказной работы

    (3.8)

    Для систем из равнонадежных элементов (

    ) (3.9)

    т.е. надежность системы с параллельным соединением повышается при увеличении числа элементов (например, при

    и , а при ).

    Поскольку

    , произведение в правой части (3.7) всегда меньше любого из сомножителей, т.е. вероятность отказа системы не может быть выше вероятности самого надежного ее элемента (“лучше лучшего”) и даже из сравнительно ненадежных элементов возможно построение вполне надежной системы.

    При экспоненциальном распределении наработки (1.7) выражение (3.9) принимает вид

    (3.10)

    откуда с помощью (1.1) после интегрирования и преобразований средняя наработка системы определяется

    (3.11) - средняя наработка элемента. При больших значениях n справедлива приближенная формула (3.12)

    Таким образом, средняя наработка системы с параллельным соединением больше средней наработки ее элементов (например, при

    , при ).

    3.3. Системы типа “m из n”


    Систему типа “m из n” можно рассматривать как вариант системы с параллельным соединением элементов, отказ которой произойдет, если из n элементов, соединенных параллельно, работоспособными окажутся менее m элементов (m

    На рис. 3.1 представлена система “2 из 5”, которая работоспособна, если из пяти её элементов работают любые два, три, четыре или все пять (на схеме пунктиром обведены функционально необходимые два элемента, причем выделение элементов 1 и 2 произведено условно, в действительности все пять элементовравнозначны). Системы типа “m из n” наиболее часто встречаются в электрических и связных системах (при этом элементами выступают связую-щие каналы), технологических линий, а также при структурном резервировании (см. п. 4.1, 4.2).

    Для расчета надежности систем типа “m из n“ при сравнительно небольшом количестве элементов можно воспользоваться методом прямого перебора . Он заключается в определении работоспособности каждого из возможных состояний системы, которые определяются различными сочета-ниями работоспособных и неработоспособных состояний элементов.

    Все состояния системы “2 из 5“ занесены в табл. 3.1. (в таблице работоспособные состояния элементов и системы отмечены знаком “+“, неработоспособные - знаком “-“). Для данной системы работоспособность определяется лишь количеством работоспособных элементов. По теореме умножения вероятностей вероятность любого состояния определяется как произведение вероятностей состояний, в которых пребывают элементы. Например, в строке 9 описано состояние системы, в которой отказали элементы 2 и 5, а остальные работоспособны. При этом условие “2 из 5“ выполняется, так что система в целом работоспособна. Вероятность такого состояния

    (предполагается, что все элементы равнонадежны). С учетом всех возможных состояний вероятность безотказной работы системы может быть найдена по теореме сложения вероятностей всех работоспособных сочетаний. Поскольку в табл. 3.1 количество неработоспособных состояний меньше, чем работоспособных (соответственно 6 и 26), проще вычислить вероятность отказа системы. Для этого суммируются вероятности неработоспособных состояний (где не выполняется условие “ 2 из 5 “)

    (3.13)

    Тогда вероятность безотказной работы системы

    (3.14)

    Расчет надежности системы “m из n“ может производиться комбинаторным методом , в основе которого лежит формула биномиального распределения. Биномиальному распределению подчиняется дискретная случайная величина k - число появлений некоторого события в серии из n опытов, если в отдельном опыте вероятность появления события составляет p. При этом вероятность появления события ровно k раз определяется

    (3.15) - биномиальный коэффициент, называемый “числом сочетаний по k из n“ (т.е. сколькими разными способами можно реализовать ситуацию “k из n“): (3.16)

    Значения биномиальных коэффициентов приведены в приложении.

    Поскольку для отказа системы “m из n“ достаточно, чтобы количество исправных элементов было меньше m, вероятность отказа может быть найдена по теореме сложения вероятностей для k = 0, 1, ... (m-1) :

    (3.17)

    Аналогичным образом можно найти вероятность безотказной работы как сумму (3.15) для k=m, m+1, ... , n :

    (3.18)

    Таблица 3.1

    Таблица состояний системы “2 из 5”

    Состояние Вероятность состояния 1 2 3 4 5 системы состояния системы 1 + + + + + + 2 + + + + - + 3 + + + - + +
    4 + + - + + +
    5 + - + + + +
    6 - + + + + +
    7 + + + - - + 8 + + - + - +
    9 + - + + - +
    10 - + + + - +
    11 + + - - + +
    12 + - + - + +
    13 - + + - + +
    14 + - - + + +
    15 - + - + + +
    16 - - + + + +
    17 + + - - - + 18 + - + - - +
    19 - + + - - +
    20 + - - - + +
    21 - + - - + +
    22 - - - + + +
    23 + - - + - +
    24 - + - + - +
    25 - - + - + +
    26 - - + + - +
    27 + - - - - - 28 - + - - - -
    29 - - + - - -
    30 - - - + - -
    31 - - - - + -
    32 - - - - - -
    Состояние элементов

    Очевидно, что Q+P=1 , поэтому в расчетах следует выбирать ту из формул (3.17), (3.18), которая в данном конкретном случае содержит меньшее число слагаемых.

    Для системы “2 из 5“ (рис. 3.1) по формуле (3.18) получим:

    (3.19)

    Вероятность отказа той же системы по (3.17):

    (3.20)

    что, как видно, дает тот же результат для вероятности безотказной работы.

    В табл. 3.2 приведены формулы для расчета вероятности безотказной работы систем типа “m из n“ при mm=1 система превращается в обычную систему с параллельным соединением элементов, а при m = n - с последовательным соединением.


    Таблица 3.2

    m 1 2 3 4 5 1 2 3 4 5

    Общее число элементов, n

    3.4. Мостиковые схемы


    Мостиковая структура (рис. 3.2, а, б) не сводится к параллельному или последовательному типу соединения элементов, а представляет собой параллельное соединение последовательных цепочек элементов с диагональными элементами, включенными между узлами различных параллельных ветвей (элемент 3 на рис. 3.2, а, элементы 3 и 6 на рис. 3.2, б). Работоспособность такой системы определяется не только количеством отказавших элементов, но и их положением в структурной схеме. Например, работоспособность ТС, схема которой приведена на рис. 3.2, а, будет утрачена при одновременном отказе элементов 1 и 2, или 4 и 5, или 2, 3 и 4 и т.д.. В то же время отказ элементов 1 и 5, или 2 и 4, или 1, 3 и 4, или 2, 3 и 5 к отказу системы не приводит.




    Таблица 3.3

    Таблица состояний мостиковой системы

    Состояние сост. 1 2 3 4 5 системы в общем случае при равнонадежных элементах 1 2 3
    4
    5
    6
    7 8
    9
    10
    11
    12
    13
    14
    15
    16
    17 18
    19
    20
    21
    22
    23
    24
    25
    26
    27 28
    29
    30
    31
    32
    Состояние элементов Вероятность состояния

    Для расчета надежности мостиковых систем можно воспользоваться методом прямого перебора , как это было сделано для систем “m из n“ (п. 3.3), но при анализе работоспособности каждого состояния системы необходимо учитывать не только число отказавших элементов, но и их положение в схеме (табл. 3.3). Вероятность безотказной работы системы определяется как сумма вероятностей всех работоспособных состояний:


    (3.21)

    В случае равнонадёжных элементов

    (3.22)

    Метод прямого перебора эффективен только при малом количестве элементов n , о чем говорилось в начале разд. 3, поскольку число состояний системы составляет

    . Например, для схемы на рис. 3.2,б их количество составит уже 256. Некоторое упрощение достигается, если в таблицу состояний включать только сочетания, отвечающие работоспособному (или только неработоспособному) состоянию системы в целом.

    Для анализа надежности ТС, структурные схемы которых не сводятся к параллельному или последовательному типу, можно воспользоваться также методом логических схем с применением алгебры логики (булевой алгебры). Применение этого метода сводится к составлению для ТС формулы алгебры логики, которая определяет условие работоспособности системы. При этом для каждого элемента и системы в целом рассматриваются два противоположных события - отказ и сохранение работоспособности.

    Для составления логической схемы можно воспользоваться двумя методами - минимальных путей и минимальных сечений.

    Рассмотрим метод минимальных путей для расчета вероятности безотказной работы на примере мостиковой схемы (рис. 3.2,а).

    Минимальным путем называется последовательный набор работоспо-собных элементов системы, который обеспечивает ее работоспособность, а отказ любого из них приводит к ее отказу.

    Минимальных путей в системе может быть один или несколько. Очевидно, система с последовательным соединением элементов (рис. 2.1) имеет только один минимальный путь, включающий все элементы. В системе с параллельным соединением (рис. 2.2) число минимальных путей совпадает с числом элементов и каждый путь включает один из них.

    Для мостиковой системы из пяти элементов (рис. 3.2,а) минимальных путей четыре: (элементы 1 и 4), (2 и 5), (1, 3 и 5), (2, 3 и 5). Логическая схема такой системы (рис. 3.3) составляется таким образом, чтобы все элементы каждого минимального пути были соединены друг с другом последовательно, а все минимальные пути параллельно.


    Затем для логической схемы составляется функция алгебры логики А по общим правилам расчета вероятности безотказной работы, но вместо символов вероятностей безотказной работы элементов

    и системы Р используются символы события (сохранения работоспособности элемента ai и системы А). Так, “отказ“ логической схемы рис. 3.3 состоит в одновременном отказе всех четырех параллельных ветвей, а “безотказная работа” каждой ветви - в одновременной безотказной работе ее элементов. Последовательное соединение элементов логической схемы соответствует логическому умножению (“И”), параллельное - логическому сложению (“ИЛИ”). Следовательно, схема рис. 3.3 соответствует утверждению: система работоспособна, если работоспособны элементы 1 и 4, или 2 и 5, или 1,3 и 5, или 2,3 и 4. Функция алгебры логики запишется: (3.23)

    В выражении (3.23) переменные а рассматриваются как булевы, т.е. могут приниматься только два значения: 0 или 1. Тогда при возведении в любую степень k любая переменная a сохраняет свое значение:

    . На основе этого свойства функция алгебры логики (3.23) может быть преобразована к виду (3.24)

    Заменив в выражении (3.24) символы событий

    их вероятностями , получим уравнение для определения вероятности безотказной работы системы (3.25)

    Для системы равнонадёжных элементов (

    ) выражение (3.25) легко преобразуется в формулу (3.22).

    Метод минимальных путей дает точное значение только для сравнительно простых систем с небольшим числом элементов. Для более сложных систем результат расчета является нижней границей вероятности безотказной работы.

    Для расчета верхней границы вероятности безотказной работы системы служит метод минимальных сечений .

    Минимальным сечением называется набор неработоспособных элементов, отказ которых приводит к отказу системы, а восстановление работоспособности любого из них - к восстановлению работоспособности системы. Как и минимальных путей, минимальных сечений может быть несколько. Очевидно, система с параллельным соединением элементов имеет только одно минимальное сечение, включающее все ее элементы (восстановление любого восстановит работоспособность системы). В системе с последовательным соединением элементовчисло минимальных путей совпадает с числом элементов, и каждое сечение включает один из них .

    В мостиковой системе (рис. 3.2, а) минимальных сечений четыре (элементы 1 и 2), (4 и 5), (1, 3 и 5) , (2, 3 и 4). Логическая схема системы (рис.3.4) составляется таким образом, чтобы все элементы каждого мини-мального сечения были соединены друг с другом параллельно, а все мини-мальные сечения - последовательно. Аналогично методу минимальных путей, составляется функция алгебры логики. “Безотказная работа” логической системы рис. 3.4 заключается в “безотказной работе” всех последовательных участков, а “отказ” каждого из них - в одновременном “отказе” всех парал-лельно включенных элементов. Как видно, поскольку схема метода минимальных сечений формулирует условия отказа системы, в ней последо-вательное соединение соответствует логическому “ИЛИ”, а параллельное - логическому “И”. Схема рис. 3.4 соответствует формулировке: система отка-жет, если откажут элементы 1 и 2, или 4 и 5, или 1, 3 и 5, или 2, 3 и 4. Функция алгебры логики запишется

    (3.26)

    После преобразований с использованием свойств булевых переменных (3.26) приобретает форму (3.24), после замены событий их вероятностями переходит в выражение (3.25).

    Таким образом, для мостиковой системы из пяти элементов верхняя и нижняя границы вероятности безотказной работы, полученные методами минимальных сечений и минимальных путей, совпали с точными значениями (3.22), полученными методом прямого перебора. Для сложных систем это может не произойти, поэтому методы минимальных путей и минимальных сечений следует применять совместно.

    В ряде случаев анализа надежности ТС удается воспользоваться методом разложения относительно особого элемента , основанными на известной в математической логике теореме о разложении функции логики по любому аргументу.Согласно ей, можно записать:

    (3.27) и - вероятности безотказной работы и отказа i - го элемента, и-вероятности работоспособного состояния системы при условии, что i - й элемент абсолютно надежен и что i - й элемент отказал.

    Для мостиковой схемы (рис. 3.2, а) в качестве особого элемента целесообразно выбрать диагональный элемент 3. При

    мостиковая схема превращается в параллельно - последовательное соединение (рис. 3.5, а), а при - в последовательно - параллельное (рис. 3.5, б).

    Для преобразованных схем можно записать:

    (3.28) (3.29)

    Тогда на основании формулы (3.27) получим:

    (3.30)

    Легко убедиться, что для равнонадёжных элементов формула (3.30) об-ращается в (3.22).

    Этим методом можно воспользоваться и при разложении относительно нескольких “особых” элементов. Например, для двух элементов (i, j ) выражение (3.27) примет вид:

    (3.31)

    Вероятность безотказной работы мостиковой схемы (рис. 3.2, б) при разложении относительно диагональных элементов 3 и 6 по (3.31) определится:

    (3.32)

    Вероятности

    легко ставить, выполнив предварительно преобразованные схемы, подобно рис. 3.5, а, б.

    3.5. Комбинированные системы


    Большинство реальных ТС имеет сложную комбинированную структуру , часть элементов которой образует последовательное соединение, другая часть - параллельное, отдельные ветви элементы или ветви структуры образуют мостиковые схемы или типа “m из n”.

    Метод прямого перебора для таких систем оказывается практически не реализуем. Более целесообразно в этих случаях предварительно произвести декомпозицию системы, разбив ее на простые подсистемы - группы элементов, методика расчета надежности которых известна. Затем эти подсистемы в структурной схеме надежности заменяются квазиэлементами с вероятностями безотказной работы, равными вычисленным вероятностям безотказной работы этих подсистем. При необходимости такую процедуру можно выполнить несколько раз, до тех пор, пока оставшиеся квазиэлементы не образуют структуру, методика расчета надежности которой также известна.


    В качестве примера рассмотрим комбинированную систему, представленную на рис. 3.6. Здесь элементы 2 и 5, 4 и 7, 9 и 12, 11 и 14 попарно образуют друг с другом последовательные соединения. Заменим их соответственно квазиэлементами А, В, С, Д, для которых расчет надежности элементарно выполняется по формулам п. 3.1. Элементы 15, 16, 17 и 18 образуют параллельное соединение (п. 3.2), а элементы 3, 6, 8, 10 и 13 - систему “3 из 5” (п. 3.2). Соответствующие квазиэлементы обозначим E и F. В результате преобразованная схема примет вид, показанный на рис. 3.7, а. В ней в свою очередь элементы А, В, С, Д, F образуют мостиковую схему (п. 3.4), которую заменяем квазиэлементом 6. Схема, полученная после таких преобразований (рис.3.7,б), образует последовательное соединение элементов 1, G, E, 19, для которых справедливы соотношения п. 3.1. Отметим, что метод прямого перебора для исходной системы потребовал бы рассмотреть

    возможных состояний.

    4. ПОВЫШЕНИЕ НАДЕЖНОСТИ ТЕХНИЧЕСКИХ СИСТЕМ


    4.1. Методы повышения надежности


    Расчетные зависимости для определения основных характеристик надежности ТС показывают, что надежность системы зависит от ее структуры (структурно - логической схемы) и надежности элементов. Поэтому для сложных систем возможны два пути повышения надежности: повышение надежности элементов и изменение структурной схемы.

    Повышение надежности элементов на первый взгляд представляется наиболее простым приемом повышения надежности системы. Действительно, теоретически всегда можно указать такие характеристики надежности элемен-тов, чтобы вероятность безотказной работы системы удовлетворяла заданным требованиям. Однако практическая реализация такой высокой надежности элементов может оказаться невозможной. Рассмотрение методов обеспечения надежности элементов ТС является предметом специальных технологических и физико-химических дисциплин и выходит за рамки теории надежности. Однако, в любом случае, высоконадежные элементы, как правило, имеют большие габариты, массу и стоимость. Исключение составляет использование более совершенной элементной базы, реализуемой на принципиально новых физических и технологических принципах (например, в РЭС - переход от дискретных элементов на интегральные схемы).

    Изменение структуры системы с целью повышения надежности подразумевает два аспекта.

    С одной стороны, это означает перестройку конструктивной или функциональной схемы ТС (структуры связей между составными элементами), изменение принципов функционирования отдельных частей системы (например, переход от аналоговой обработки сигналов к цифровой). Такого рода преобразования ТС возможны исключительно редко, так что этот прием, в общем, не решает проблемы надежности.

    С другой стороны, изменение структуры понимается как введение в ТС дополнительных, избыточных элементов, включающихся в работу при отказе основных. Применение дополнительных средств и возможностей с целью сохранения работоспособного состояния объекта при отказе одного или нескольких его элементов называется резервированием .

    Принцип резервирования подобен рассмотренному ранее параллельному соединению элементов (п. 3.2) и соединению типа “n из m” (п. 3.3), где за счет избыточности возможно обеспечение более высокой надежности системы, чем ее элементов.

    Выделяют несколько видов резервирования (временное, информацион-ное, функциональное и др.). Для анализа структурной надежности ТС интерес представляет структурное резервирование - введение в структуру объекта дополнительных элементов, выполняющих функции основных элементов в случае их отказа.

    Классификация различных способов структурного резервирования осуществляется по следующим признакам:

    1) по схеме включения резерва:

    Общее резервирование, при котором резервируется объект в целом;

    Раздельное резервирование, при котором резервируются отдельные элементы или их группы;

    Смешанное резервирование, при котором различные виды резервирования сочетаются в одном объекте;

    2) по способу включения резерва:

    Постоянное резервирование, без перестройки структуры объекта при возникновении отказа его элемента;

    Динамическое резервирование, при котором при отказе элемента происходит перестройка структуры схемы. В свою очередь подразделяется на:

    а) резервирование замещением, при котором функции основного элемента передаются резервному только после отказа основного;

    б) скользящее резервирование, при котором несколько основных элементов резервируется одним или несколькими резервными, каждый из которых может заменить любой основной (т.е. группы основных и резервных элементов идентичны).

    3) по состоянию резерва:

    Нагруженное резервирование, при котором резервные элементы (или один из них) находятся в режиме основного элемента;

    Облегченное резервирование, при котором резервные элементы (по крайней мере один из них) находятся в менее нагруженном режиме по сравнению с основными;

    Ненагруженное резервирование, при котором резервные элементы до начала выполнения ими функций находятся в ненагруженном режиме.

    Основной характеристикой структурного резервирования является кратность резервирования - отношение числа резервных элементов к числу резервируемых ими основных элементов, выраженное несокращаемой дробью (типа 2:3; 4:2 и т.д.). Резервирование одного основного элемента одним резервным (т.е. с кратностью 1:1) называется дублированием .

    Количественно повышение надежности системы в результате резервирования или применения высоконадежных элементов можно оценить по коэффициенту выигрыша надежности , определяемому как отношение показателя надежности до и после преобразования системы. Например, для системы из n последовательно соединенных элементов после резервирования одного из элементов (k-го) аналогичным по надежности элементом коэффициент выигрыша надежности по вероятности безотказной работы составит

    (4.1)

    Из формулы (4.1) следует, что эффективность резервирования (или другого приема повышения надежности) тем больше, чем меньше надежность резервируемого элемента (при

    , при ). Следова-тельно, при структурном резервировании максимального эффекта можно до-биться при резервировании самых ненадежных элементов (или групп элемен-тов).

    В общем случае при выборе элемента (или группы элементов) для повышения надежности или резервирования необходимо исходить из условия обеспечения при этом максимального эффекта. Например, для мостиковойсхемы (рис. 3.2,а) из формулы (3.21) можно получить выражение для частных производных вероятности безотказной работы системы по вероятности безотказной работы каждого из элементов, которые для идентичных по надежности элементов принимают следующий вид:

    (4.2) (4.3)

    Очевидно, максимальное увеличение надежности системы обеспечит увеличение надежности или резервирование того элемента, частная производная для которого при данных условиях принимает максимально положительное значение. Сравнение выражений (4.2) и (4.3) показывает, что при любых положительных значениях p и q выражение (4.2) больше выражения (4.3) и, следовательно, в мостиковой схеме с идентичными элементами эффективность повышения надежности или резервирования “периферийных” элементов 1, 2, 4 и 5 (см. рис. 3.2, а) выше, чем диагонального элемента 3, если в качестве критерия эффективности взять вероятность безотказной работы.

    Таким образом, наибольшее влияние на надежность системы оказывают элементы, обладающие высоким значением производной

    , а при последова-тельном соединении - наименее надежные.

    В более сложных случаях для выбора элементов, подлежащих изменению, используются как аналитические, так и численные методы оптимизации надежности.


    4.2. Расчет надежности систем с резервированием


    Расчет количественных характеристик надежности систем с резервированием отдельных элементов или групп элементов во многом определяется видом резервирования. Ниже рассматриваются схемы расчетов для самых распространенных случаев простого резервирования, к которым путем преобразований может быть приведена и структура смешенного резервирования. При этом расчетные зависимости получены без учета надежности переключающих устройств, обеспечивающих перераспределение нагрузки между основными и резервными элементами (т.е. для “идеальных” переключателей). В реальных условиях введение переключателей в структурную схему необходимо учитывать и в расчете надежности систем.

    Расчет систем с нагруженным резервированием осуществляется по формулам последовательного и параллельного соединения элементов аналогично расчету комбинированных систем (п. 3.5). При этом считается, что резервные элементы работают в режиме основных как до, так и после их отказа, поэтому надежность резервных элементов не зависит от момента их перехода из резервного состояния в основное и равна надежности основных элементов.

    Для системы с последовательным соединением n элементов (рис. 2.1) при общем резервировании с кратностью l (рис. 4.1, а)

    (4.4)

    В частности, при дублировании (l =1)

    (4.5)

    При раздельном резервировании (рис. 4.1,б)

    (4.6)

    а при раздельном дублировании (l =1)

    (4.7)


    Тогда коэффициенты выигрыша надежности по вероятности безотказной работы при дублировании

    (4.8)

    откуда следует, что раздельное резервирование эффективнее общего (например, для системы из трех одинаковых элементов при

    , .

    При ненагруженном резервировании резервные элементы последовательно включаются в работу при отказе основного, затем первого резервного и т.д. (рис. 4.2), поэтому надежность резервных элементов зависит от момента их перехода в основное состояние. Такое резервирование в различных ТС встречается наиболее часто, т.к. оно по сути аналогично замене отказавших элементов и узлов на запасные.


    Если резервные элементы до их включения абсолютно надежны, то для системы с ненагруженным резервированием кратности l (всего элементов l+1 )

    (4.9)

    т.е. вероятность отказа в (l+1 )! раз меньше, чем при нагруженном (параллельном соединении, см. формулу (3.7)).

    Для идентичных по надежности основного и резервного элементов

    (4.10)

    При экспоненциальном распределении наработки (простейшем потоке отказов, см. 1.7) в случае

    можно воспользоваться приближенной формулой (4.11)

    При ненагруженном резервировании средняя наработка на отказ

    (4.12)

    а для идентичных элементов

    Облегченное резервирование используется при большой инерционности переходных процессов, происходящих в элементе при его переходе из резервного в основной режим, и нецелесообразности применения нагруженного резервирования из - за недостаточного выигрыша в надежности (в РЭС это характерно для устройств на электровакуумных приборах). Очевидно, облегченный резерв занимает промежуточное положение между нагруженным и ненагруженным.

    Точные выражения для расчета надежности систем при облегченном резервировании весьма громоздки и неоднозначны, однако при экспонен-циальном распределении наработки справедлива приближенная формула

    (4.13) - интенсивность отказов элементов в облегченном режиме, l - кратность резервирования.

    Скользящее резервирование используется для резервирования нескольких одинаковых элементов системы одним или несколькими одинаковыми резервными (рис. 4.3, здесь все элементы идентичны, а элемент 4 - избыточный). Очевидно, отказ системы произойдет, если из общего количества идентичных элементов (основных и резервных) число отказавших превышает число резервных. Расчет вероятности безотказной работы систем со скользящим резервированием аналогичен расчету систем типа “m из n”, см. п. 3.3.



    Задание на курсовую работу (КР) содержит в качестве исходных данных структурную схему надежности технической системы (ТС) и интенсивность отказов ее элементов (см. п. 7). То есть студент оказывается в ситуации, когда выполнены п. 1 - 6 анализа структурной надежности ТС (см. разд. 2), и ему надлежит в первую очередь выполнить п. 7 - составить расчетные зависимости для определения показателей надежности системы для различных значений наработки t , чтобы графически изобразить вероятность безотказной работы P(t) как функцию наработки.

    Поскольку заданная схема надежности является комбинированной, ее следует подвергнуть декомпозиции, как это описано в п. 3.5. Далее, вводя соответствующие квазиэлементы, преобразовать исходную схему к простейшему виду и, используя соответствующие формулы п. 3.1 - 3.4, для ряда значений наработки t в предположении простейшего потока отказов формулы (1.7) вычислить значения вероятностей безотказной работы элементов, квазиэлементов и всей системы. В пояснительной записке следует привести все промежуточные преобразования исходной схемы, конкретные рабочие расчетные формулы с их обоснованием, а результаты расчета представить в виде таблицы, в которой по столбцам изменяется значение наработки t , а по строкам в столбцах приводятся вычисленные значения вероятностей безотказной работы элементов, квазиэлементов и всей системы, полученные по рабочим формулам. При этом диапазон измерения наработки t должен обеспечить снижение вероятности безотказной работы системы до уровня 0.1 - 0.2 и содержать не менее 8-10 значений аргумента.

    После этого строится график зависимости P(t) по результатам расчета. И него графически по заданному значению

    определяется - процентная наработка системы (см. (1.9)), .

    По заданию требуется предложить способы увеличения

    - процентной наработки в 1.5 раза за счет повышения надежности элементов и за счет структурного резервирования.

    Предварительно следует определить элемент или квазиэлемент окончательно преобразованной схемы, повышение надежности которого даст максимальный эффект в отношении надежности всей системы. Критерии выбора приведены в п. 4.1. Поскольку аналитически определить производные вида (4.2), (4.3) обычно не удается, выбор элемента может быть осуществлен по величине вероятности безотказной работы.

    Для дальнейших действий необходимо вычислить требуемое улучшенное значение

    - процентной наработки элементарным умножением на 1.5. Следовательно, чтобы удовлетворить заданию в отношении повышения надежности системы, необходимо обеспечить вероятность безотказной работы за время . Теперь следует повторить расчет надежности элементов, квазиэлементов и всей системы за время и дополнить этим столбцом предыдущую таблицу. Зная вероятности безотказной работы всех элементов преобразованной схемы и требуемое значение , легко определить,какую вероятность безотказной работы за время должен иметь квазиэлемент, избранный для модернизации.

    По первому варианту модернизации необходимо определить интенсивности отказов элементов, входящих в данный квазиэлемент, при которых при неизменной структуре квазиэлемента обеспечивалось бы необходимое значение

    . Проще это осуществить графоаналитическим методом, задавая ряд пропорционально уменьшенных (по сравнению с исходной) интенсивностей отказов для составляющих квазиэлемента и просчитывая каждый раз величину . Из построенного по этим данным графика можно определить необходимую кратность снижения интенсивности отказов элементов и сами значения интенсивности. Для найденного решения следует выполнить проверочный расчет вероятности безотказной работы системы за время .

    По второму методу надежность выбранного квазиэлемента можно повысить за счет резервирования без изменения надежности составляющих элементов. При этом, основываясь на рекомендациях и соображениях, изложенных в п. 4.1, 4.2, учитывая структуру модернизируемого квазиэлемента, нужно выбрать, какие его составляющие элементы и как следует резервировать для достижения наибольшего эффекта. Далее остается определить необходимую кратность резервирования

    . Поскольку есть величина дискретная, аналитически ее определить невозможно. Для решения задачи нужно последовательно увеличивать кратность резервирования, начиная с единицы, каждый раз по соответствующим формулам из п. 4.2 определять величину вероятности безотказной работы квазиэлемента в течении времени . Как только необходимое значение будет обеспечено, окажется реализованным второй метод повышения надежности системы. Для найденного решения также необходимо провести проверку вероятности безотказной работы системы за время. Модернизированную структуру с резервированием следует привести в пояснительной записке.

    Для построения зависимостей вероятностей безотказной работы от времени для модернизированной системы по первому и второму методу удобно дополнить ранее составленную таблицу соответствующими строками. Графики этих зависимостей следует изобразить совместно с кривой P(t ) исходной системы.

    Полученное семейство кривых позволяет провести сравнение двух вариантов модернизации, которое следует привести в качестве вывода к работе.

    Пояснительная записка должна быть оформлена в соответствии с СТП КрПИ 3.1 - 92 «Текстовые документы. Требования к оформлению». Все действия и использование расчетных сотношений должны быть объяснены и обоснованы. Для заимствуемой информации (формулы, численные значения констант) необходимо указать источник заимствования.

    Задания на курсовую работу приведены в разд. 6, а в разд. 7 - пример расчета надежности.


    6. ИСХОДНЫЕ ДАННЫЕ К РАБОТЕ


    По структурной схеме надежности технической системы в соответствии с вариантом задания, требуемому значению вероятности безотказной работы системы

    и значениям интенсивностей отказов ее элементов (табл. 6.1) требуется:

    1. Построить график изменения вероятности безотказной работы системы от времени наработки в диапазоне снижения вероятности до уровня 0.1 - 0.2.

    2. Определить

    - процентную наработку технической системы.

    3. Обеспечить увеличение

    - процентной наработки не менее, чем в 1.5 раза за счет:

    а) повышения надежности элементов;

    б) структурного резервирования элементов системы.

    Все элементы системы работают в режиме нормальной эксплуатации (простейший поток отказов). Резервирование отдельных элементов или групп элементов осуществляется идентичными по надежности резервными элементами или группами элементов. Переключатели при резервировании считаются идеальными.

    На схемах обведенные пунктиром m элементов являются функционально необходимыми из n параллельных ветвей.








































    7. ПРИМЕР РАСЧЕТА НАДЕЖНОСТИ


    Структурная схема надежности приведена на рис 7.1. Значения интенсивности отказов элементов даны в

    1/ч.

    1. В исходной схеме элементы 2 и 3 образуют параллельное соединение. Заменяем их квазиэлементом А. Учитывая, что

    , получим . (7.1)

    2. Элементы 4 и 5 также образуют параллельное соединение, заменив которое элементом В и учитывая, что

    , получим . (7.2)

    3. Элементы 6 и 7 в исходной схеме соединены последовательно. Заменяем их элементом С, для которого при

    . (7.3)

    4. Элементы 8 и 9 образуют параллельное соединение. Заменяем их элементом D, для которого при

    , получим . (7.4)

    5. Элементы 10 и 11 с параллельным соединением заменяем элементом Е, причем, так как

    , то (7.5)

    6. Элементы 12 , 13 , 14 и 15 образуют соединение “2 из 4”, которое заменяем элементом F. Так как

    , то для определения вероятности безотказной работы элемента F можно воспользоваться комбинаторным методом (см. раздел 3.3): (7.6)

    7. Преобразованная схема изображена на рис. 7.2.

    8. Элементы A, B, C, D и Е образуют (рис. 7.2) мостиковую систему, которую можно заменить квазиэлементом G. Для расчета вероятности безотказной работы воспользуемся методом разложения относительно особого элемента (см. раздел 3.4), в качестве которого выберем элемент С. Тогда

    (7.7) - вероятность безотказной работы мостиковой схемы при абсолютно надежном элементе С (рис. 7.3, а), - вероятность безотказной работы мостиковой схемы при отказавшем элементе С (рис. 7.3, б).

    Учитывая, что

    , получим
    (7.8)

    9. После преобразований схема изображена на рис. 7.4.

    10. В преобразованной схеме (рис. 7.4) элементы 1, G и F образуют последовательное соединение. Тогда вероятность безотказной работы всей системы (7.9)

    11. Так как по условию все элементы системы работают в периоде нормальной эксплуатации, то вероятность безотказной работы элементов с 1 по 15 (рис. 7.1) подчиняются экспоненциальному закону.

    Разрабатываемая система в конечном варианте будет представлять собой Web - приложение. Таким образом, для обеспечения надежной работы системы необходимо обеспечить надежную работу программной части. При этом надежность системы будет рассчитываться по формуле (1):

    Р сист = Р апп.ч Р прог.ч , (1)

    где Р сист - надежность всей системы;

    Р апп.ч - надежность аппаратной части;

    Р прог.ч - надежность программной части.

    Расчет надежности программной части

    Надежность программной части будет рассчитываться по формуле (2):

    Р прог.ч = Р сервер Р клиент P ПО , (2)

    где Р сервер - надежность программного обеспечения сервера;

    Р клиент - надежность программного обеспечения клиента;

    Р ПО - надежность разработанного программного обеспечения.

    Расчет надежности программного обеспечения сервера

    Надежность программного обеспечения сервера рассчитывается по формуле(3):

    Р сервер = Р СУБД Р ОС , (3)

    где РСУБД - надежность системы управления базой данных;

    Р ОС - надежность операционной системы, установленной на сервере.

    В качестве операционной системы, установленной на сервере, используется Red Hat Enterprise Linux 5, компания производитель установила вероятность безотказной работы равной:

    Р ОС = 0,99.

    В качестве сервера базы данных используется СУБД Cache, компания производитель Intersystems установила вероятность безотказной работы равной:

    Р СУБД = 0,98.

    Таким образом, вероятность безотказной работы ПО сервера составляет:

    Р сервер =0,99 0,98= 0,98

    Расчет надежности программного обеспечения клиента

    Надежность программного обеспечения клиента рассчитывается по формуле (4):

    Р клиент = Р ОС Р ВБ , (4)

    где Р ОС - надежность операционной системы, установленной на клиенте;

    Р ВБ - надежность веб-браузера, используемого клиентом.

    В качестве операционной системы, установленной на клиенте, используется Windows 7 Home Premium, компания производитель Microsoft Corporation установила вероятность безотказной работы равной:

    Р ОС = 0,98.

    Для пакета Internet Explorer 10, компания производитель установила вероятность безотказной работы равной:

    Р ВБ = 0,9.

    Вероятность безотказной работы программного обеспечения клиента составляет:

    Р клиент = 0,98 0,9 = 0,88

    Расчет надежности программного обеспечения

    Надежность программного обеспечения целиком определяется ошибками разработки. Для среды, в которой по мере обнаружения ошибки исправляются и не вносятся в результаты новые ошибки, надежность программного обеспечения со временем увеличивается.

    Используя модель Миллса, рассчитаем надежность программного обеспечения разработанной системы. В программу было искусственно занесено S = 25 ошибок и при Т = 100 запусков обнаружено V = 24 искусственных и n = 4 собственных ошибок. Предполагается, что все ошибки, как искусственные, так и собственные, имеют равную вероятность быть обнаруженными. Тогда первоначальное количество ошибок можно определить из соотношения (5):

    Вероятность, с которой можно высказать такое предположение в случае, когда не обнаружены все искусственно рассеянные ошибки, рассчитывается по формуле (6):

    где К? n - число собственных ошибок; числитель и знаменатель формулы являются биноминальными коэффициентами вида (7):

    Получаем вероятность того, что в системе было 5 собственных ошибок С = 0,75.

    Вероятность неверного исхода определяется по формуле 8.

    Вероятность безотказной работы (ВБР) определяется формулой (9):

    График зависимости безотказной работы программного обеспечения системы от времени (в часах) представлен на рисунке 23.

    Рисунок 23 - Зависимость вероятности безотказной работы программного обеспечения от времени (в часах)

    Надежность программной части. По формуле (5.2) определим вероятность безотказной работы всей программной части системы и построим график зависимости. График зависимости вероятности безотказной работы программной части системы от времени (в часах) представлен на рисунке 24.


    Рисунок 24 - Зависимость вероятности безотказной работы программной части системы от времени (в часах)

    По рисунку видно, что ошибки разработки программного обеспечения уменьшают надежность всей системы. По мере выявления и устранения ошибок разработки, их влияние на надежность системы уменьшается.

    ОСНОВЫ РАСЧЕТА РАСЧЕТА НАДЕЖНОСТИ ТЕХНИЧЕСКИХ СИСТЕМ ПО НАДЕЖНОСТИ ИХ ЭЛЕМЕНТОВ


    Целевое назначение и классификация методов расчета

    Расчеты надежности - расчеты, предназначенные для определения количественных показателей надежности. Они проводятся на различных этапах разработки, создания и эксплуатации объектов.

    На этапе проектирования расчет надежности производится с целью прогнозирования (предсказания) ожидаемой надежности проектируемой системы. Такое прогнозирование необходимо для обоснования предполагаемого проекта, а также для решения организационно-технических вопросов:
    - выбора оптимального варианта структуры;
    - способа резервирования;
    - глубины и методов контроля;
    - количества запасных элементов;
    - периодичности профилактики.

    На этапе испытаний и эксплуатации расчеты надежности проводятся для оценки количественных показателей надежности. Такие расчеты носят, как правило, характер констатации. Результаты расчетов в этом случае показывают, какой надежностью обладали объекты, прошедшие испытания или используемые в некоторых условиях эксплуатации. На основании этих расчетов разрабатываются меры по повышению надежности, определяются слабые места объекта, даются оценки его надежности и влияния на нее отдельных факторов.

    Многочисленные цели расчетов привели к большому их разнообразию. На рис. 4.5.1 изображены основные виды расчетов.

    Элементный расчет - определение показателей надежности объекта, обусловленных надежностью его комплектующих частей (элементов). В результате такого расчета оценивается техническое состояние объекта (вероятность того, что объект будет находиться в работоспособном состоянии, средняя наработка на отказ и т.п.).

    Рис. 4.5.1. Классификация расчетов надежности

    Расчет функциональной надежности - определение показателей надежности выполнения заданных функций (например, вероятность того, что система очистки газа будет работать заданное время, в заданных режимах эксплуатации с сохранением всех необходимых параметров по показателям очистки). Поскольку такие показатели зависят от ряда действующих факторов, то, как правило, расчет функциональной надежности более сложен, чем элементный расчет.

    Выбирая на рис 4.5.1 варианты перемещений по пути, указанному стрелками, каждый раз получаем новый вид (случай) расчета.

    Самый простой расчет - расчет, характеристики которого представлены на рис. 4.5.1 слева: элементный расчет аппаратурной надежности простых изделий, нерезервированных, без учета восстановлений работоспособности при условии, что время работы до отказа подчинено экспоненциальному распределению.

    Самый сложный расчет - расчет, характеристики которого представлены на рис. 4.5.1 справа: функциональной надежности сложных резервированных систем с учетом восстановления их работоспособности и различных законов распределения времени работы и времени восстановления.
    Выбор того или иного вида расчета надежности определяется заданием на расчет надежности. На основании задания и последующего изучения работы устройства (по его техническому описанию) составляется алгоритм расчета надежности, т.е. последовательность этапов расчета и расчетные формулы.

    Последовательность расчета систем

    Последовательность расчета системы представлена на рис. 4.5.2. Рассмотрим основные ее этапы.

    Рис. 4.5.2. Алгоритм расчета надежности

    Прежде всего четко следует сформулировать задание на расчет надежности. В нем должны быть указаны: 1) назначение системы ее состав и основные сведения о функционировании; 2) показатели надежности и признаки отказов, целевое назначение расчетов; 3) условия, в которых работает (или будет работать) система; 4) требования к точности и достоверности расчетов, к полноте учета действующих факторов.
    На основании изучения задания делается вывод о характере предстоящих расчетов. В случае расчета функциональной надежности осуществляется переход к этапам 4-5-7, в случае расчета элементов (аппаратурной надежности) - к этапам 3-6-7.

    Под структурной схемой надежности понимается наглядное представление (графическое или в виде логических выражений) условий, при которых работает или не работает исследуемый объект (система, устройство, технический комплекс и т.д.). Типовые структурные схемы представлены на рис. 4.5.3.

    Рис. 4.5.3. Типовые структуры расчета надежности

    Простейшей формой структурной схемы надежности является параллельно-последовательная структура. На ней параллельно соединяются элементы, совместный отказ которых приводит к отказу
    В последовательную цепочку соединяются такие элементы, отказ любого из которых приводит к отказу объекта.

    На рис. 4.5.3,а представлен вариант параллельно-последовательной структуры. По этой структуре можно сделать следующее заключение. Объект состоит из пяти частей. Отказ объекта наступает тогда, когда откажет или элемент 5, или узел, состоящий из элементов 1-4. Узел может отказать тогда, когда одновременно откажет цепочка, состоящая из элементов 3,4 и узел, состоящий из элементов 1,2. Цепь 3-4 отказывает, если откажет хотя бы один из составляющих ее элементов, а узел 1,2 - если откажут оба элемента, т.е. элементы 1,2. Расчет надежности при наличии таких структур отличается наибольшей простотой и наглядностью. Однако не всегда удается условие работоспособности представить в виде простой параллельно-последовательной структуры. В таких случаях используют или логические функции, или графы и ветвящиеся структуры, по которым оставляются системы уравнений работоспособности.

    На основе структурной схемы надежности составляется набор расчетных формул. Для типовых случаев расчета используются формулы, приведенные в справочниках по расчетам надежности, стандартах и методических указаниях. Прежде чем применять эти формулы, необходимо предварительно внимательно изучить их существо и области использования.

    Расчет надежности, основанный на использовании параллельно-последовательных структур

    Пусть некоторая техническая система D составлена из n элементов (узлов). Допустим, надежности элементов нам известны. Возникает вопрос об определении надежности системы. Она зависит от того, каким образом элементы объединены в систему, какова функция каждого из них и в какой мере исправная работа каждого элемента необходима для работы системы в целом.

    Параллельно-последовательная структура надежности сложного изделия дает представление о связи между надежностью изделия и надежностью его элементов. Расчет надежности ведется последовательно - начиная от расчета элементарных узлов структуры к ее все более сложным узлам. Например, в структуре рис. 5.3,а узел, состоящий из элементов 1-2 - элементарный узел, состоящий из элементов 1-2-3-4, сложный. Эта структура может быть сведена к эквивалентной, состоящей из элементов 1-2-3-4 и элемента 5, соединенных последовательно. Расчет надежности в данном случае сводится к расчету отдельных участков схемы, состоящих из параллельно и последовательно соединенных элементов.

    Система с последовательным соединением элементов

    Самым простым случаем в расчетном смысле является последовательное соединение элементов системы. В такой системе отказ любого элемента равносилен отказу системы в целом. По аналогии с цепочкой последовательно соединенных проводников, обрыв каждого из которых равносилен размыканию всей цепи, мы и называем такое соединение "последовательным" (рис. 4.5.4). Следует пояснить, что "последовательным" такое соединение элементов является только в смысле надежности, физически они могут быть соединены как угодно.

    Рис. 4.5.4. Блок-схема системы с последовательным соединением элементов

    С позиции надежности, такое соединение означает, что отказ устройства, состоящего из этих элементов, происходит при отказе элемента 1 или элемента 2, или элемента 3, или элемента n. Условие работоспособности можно сформулировать следующим образом: устройство работоспособно, если работоспособен элемент 1 и элемент 2, и элемент 3, и элемент n.

    Выразим надежность данной системы через надежности ее элементов. Пусть имеется некоторый промежуток времени (0,t ), в течение которого требуется обеспечить безотказную работу системы. Тогда, если надежность системы характеризуется законом надежности Р(t), нам важно знать значение этой надежности при t=t , т.е. Р(t ). Это не функция, а определенное число; отбросим аргумент t и обозначим надежность системы просто Р. Аналогично обозначим надежности отдельных элементов P 1 , P 2 , P 3 , ..., P n .

    Для безотказной работы простой системы в течение времени t нужно, чтобы безотказно работал каждый из ее элементов. Обозначим S - событие, состоящее в безотказной работе системы за время t ; s 1 , s 2 , s 3 , ..., s n - события, состоящие в безотказной работе соответствующих элементов. Событие S есть произведение (совмещение) событий s 1 , s 2 , s 3 , ..., s n:
    S = s 1 × s 2 × s 3 × ... × s n .

    Предположим, что элементы s 1 , s 2 , s 3 , ..., s n отказывают независимо друг от друга (или, как говорят применительно к надежности, "независимы по отказам", а совсем кратко "независимы"). Тогда по правилу умножения вероятностей для независимых событий Р(S)=P(s 1)× P(s 2)× P(s 3)× ...× P(s n) или в других обозначениях,
    Р = Р 1 × Р 2 × Р 3 × ... × Р n .,(4.5.1)
    а корочеP = ,(4.5.2)
    т.е. надежность (вероятность работоспособного состояния) простой системы, составленной из независимых по отказам, последовательно соединенных элементов, равна произведению надежностей ее элементов.

    В частном случае, когда все элементы обладают одинаковой надежностью P 1 =P 2 =P 3 = ... =P n , выражение (4.5.2) принимает вид
    Р = P n .(4.5.3)

    Пример 4.5.1. Система состоит из 10 независимых элементов, надежность каждого из которых равна Р=0,95. Определить надежность системы.

    По формуле (4.5.3) Р = 0,95 10 » 0,6.

    Из примера видно, как резко падает надежность системы при увеличении в ней числа элементов. Если число элементов n велико, то для обеспечения хотя бы приемлемой надежности Р системы каждый элемент должен обладать очень высокой надежностью.

    Поставим вопрос: какой надежностью Р должен обладать отдельный элемент для того, чтобы система, составленная из n таких элементов, обладала заданной надежностью Р?

    Из формулы (4.5.3) получим:
    Р = .

    Пример 4.5.2. Простая система состоит из 1000 одинаково надежных, независимых элементов. Какой надежностью должен обладать каждый из них для того, чтобы надежность системы была не меньше 0,9?
    По формуле (4.5.4) Р = ; lgР = lg0,9 1/1000 ; Р » 0,9999.

    Интенсивность отказов системы при экспоненциальном законе распределения времени до отказа легко определить из выражения
    l с = l 1 + l 2 + l 3 + ... + l n ,(4.5.4)
    т.е. как сумму интенсивностей отказов независимых элементов. Это и естественно, так как для системы, в которой элементы соединены последовательно, отказ элемента равносилен отказу системы, значит все потоки отказов отдельных элементов складываются в один поток отказов системы с интенсивностью, равной сумме интенсивностей отдельных потоков.

    Формула (4.5.4) получается из выражения
    Р = P 1 P 2 P 3 ... P n = ехр{-(
    l 1 + l 2 + l 3 + ... + l n )}.(4.5.5)
    Среднее время работы до отказа
    Т 0 = 1/ l с .(4.5.6)

    Пример 4.5.3. Простая система S состоит из трех независимых элементов, плотности распределения времени безотказной работы которых заданы формулами:

    при 0 < t < 1 (рис. 4.5.5).

    Рис. 4.5.5. Плотности распределения времени безотказной работы

    Найти интенсивность отказов системы.
    Решение. Определяем ненадежность каждого элемента:
    при 0 < t < 1.

    Отсюда надежности элементов:
    при 0 < t < 1.

    Интенсивности отказов элементов (условная плотность вероятности отказов) - отношение f(t) к р(t):
    при 0 < t < 1.
    Складывая, имеем: l с = l 1 (t) + l 2 (t) + l 3 (t).

    Пример 4.5.4. Предположим, что для работы системы с последовательным соединением элементов при полной нагрузке необходимы два разнотипных насоса, причем насосы имеют постоянные интенсивности отказов, равные соответственно l 1 =0,0001ч -1 и l 2 =0,0002ч -1 . Требуется вычислить среднее время безотказной работы данной системы и вероятность ее безотказной работы в течение 100ч. Предполагается, что оба насоса начинают работать в момент времени t =0.

    С помощью формулы (4.5.5) находим вероятность безотказной работы P s заданной системы в течение 100ч:
    P s (t)= .
    P s (100)=е -(0,0001+0,0002)
    × 100 =0,97045.

    Используя формулу (4.5.6), получаем

    ч.

    На рис. 4.5.6 представлено параллельное соединение элементов 1, 2, 3. Это означает, что устройство, состоящее из этих элементов, переходит в состояние отказа после отказа всех элементов при условии, что все элементы системы находятся под нагрузкой, а отказы элементов статистически независимы.

    Рис. 4. 5.6. Блок-схема системы с параллельным соединением элементов

    Условие работоспособности устройства можно сформулировать следующим образом: устройство работоспособно, если работоспособен элемент 1 или элемент 2, или элемент 3, или элементы 1 и 2, 1; и 3, 2; и 3, 1; и 2; и 3.

    Вероятность безотказного состояния устройства, состоящего из n параллельно соединенных элементов определяется по теореме сложения вероятностей совместных случайных событий как
    Р=(р 1 +р 2 +...р n)-(р 1 р 2 +р 1 р 3 +...)-(р 1 р 2 р 3 +р 1 р 2 р n +...)-...
    ± (р 1 р 2 р 3 ...р n).(4.5.7)
    Для приведенной блок-схемы (рис. 4.5.6), состоящей из трех элементов, выражение (4.5.7) можно записать:
    Р=р 1 +р 2 +р 3 -(р 1 р 2 +р 1 р 3 +р 2 р 3)+р 1 р 2 р 3 .

    Применительно к проблемам надежности, по правилу умножения вероятностей независимых (в совокупности) событий, надежность устройства из n элементов вычисляется по формуле
    Р = 1- ,(4.5.8)
    т.е. при параллельном соединении независимых (в смысле надежности) элементов их ненадежности (1-p i =q i) перемножаются.

    В частном случае, когда надежности всех элементов одинаковы, формула (4.5.8) принимает вид
    Р = 1 - (1-р) n .(4.5.9)

    Пример 4.5.5. Предохранительное устройство, обеспечивающее безопасность работы системы под давлением, состоит из трех дублирующих друг друга клапанов. Надежность каждого из них р=0,9. Клапаны независимы в смысле надежности. Найти надежность устройства.

    Решение. По формуле (4.5.9)Р=1-(1-0,9) 3 =0,999.

    Интенсивность отказов устройства состоящего из n параллельно соединенных элементов, обладающих постоянной интенсивностью отказов l 0 , определяется как

    .(4.5.10)

    Из (4.5.10) видно, что интенсивность отказов устройства при n>1 зависит от t: при t=0 она равна нулю, при увеличении t, монотонно возрастает до l 0 .

    Если интенсивности отказов элементов постоянны и подчинены показательному закону распределения, то выражение (4.5.8) можно записать

    Р(t) = .(4.5.11)

    Среднее время безотказной работы системы Т 0 находим, интегрируя уравнение (4.5.11) в интервале :

    Т 0 =
    =(1/ l 1 +1/ l 2 +…+1/ l n )-(1/(l 1 + l 2 )+ 1/(l 1 + l 3 )+…)+(4.5.12)
    +(1/(l 1 + l 2 + l 3 )+1/(l 1 + l 2 + l 4 )+…)+(-1) n+1 ´ .

    В случае, когда интенсивности отказов всех элементов одинаковы, выражение (4.5.12) принимает вид

    Т 0 = .(4.5.13)

    Среднее время работы до отказа также можно получить, интегрируя уравнение (4.5.7) в интервале

    Пример 4.5.6. Предположим, что два одинаковых вентилятора в системе очистки отходящих газов работают параллельно, причем если один из них выходит из строя, то другой способен работать при полной системной нагрузке без изменения своих надежностных характеристик.

    Требуется найти безотказность системы в течение 400ч (продолжительность выполнения задания) при условии, что интенсивности отказов двигателей вентиляторов постоянны и равны l =0,0005ч -1 , отказы двигателей статистически независимы и оба вентилятора начинают работать в момент времени t=0.

    Решение. В случае идентичных элементов формула (4.5.11) принимает вид
    Р(t) = 2еxp(- l t) - еxp(-2 l t).
    Поскольку l = 0,0005 ч -1 и t = 400 ч, то
    Р (400) = 2еxp(-0,0005 ´ 400) - еxp(-2 ´ 0,0005 ´ 400)=0,9671.
    Среднюю наработку на отказ находим, используя (4.5.13):
    Т 0 = 1/l (1/1 + 1/2) = 1/l ´ 3/2 = 1,5/0,0005 = 3000 ч.

    Рассмотрим самый простой пример резервированной системы - параллельное соединение резервного оборудования системы. В этой схеме все n одинаковых образцов оборудования работают одновременно, и каждый образец оборудования имеет одинаковую интенсивность отказов. Такая картина наблюдается, например, если все образцы оборудования держатся под рабочим напряжением (так называемый "горячий резерв"), а для исправной работы системы должен быть исправен хотя бы один из n образцов оборудования.

    В этом варианте резервирования применимо правило определения надежности параллельно соединенных независимых элементов. В нашем случае, когда надежности всех элементов одинаковы, надежность блока определяется по формуле (4.5.9)

    Р = 1 - (1-р) n .
    Если система состоит из n образцов резервного оборудования с различными интенсивностями отказов, то
    P(t) = 1-(1-p 1) (1-p 2)... (1-p n).(4.5.21)

    Выражение (4.5.21) представляется как биноминальное распределение. Поэтому ясно, что когда для работы системы требуется по меньшей мере k исправных из n образцов оборудования, то
    P(t) = p i (1-p) n-i ,где .(4.5.22)

    При постоянной интенсивности отказов l элементов это выражение принимает вид

    P(t) = ,(4.5.22.1)

    где р = еxp(-l t).

    Включение резервного оборудования системы замещением

    В данной схеме включения n одинаковых образцов оборудования только один находится все время в работе (рис. 4.5.11). Когда работающий образец выходит из строя, его непременно отключают, и в работу вступает один из (n -1) резервных (запасных) элементов. Этот процесс продолжается до тех пор, пока все (n -1) резервных образцов не будут исчерпаны.

    Рис. 4.5.11. Блок-схема системы включения резервного оборудования системы замещением
    Примем для этой системы следующие допущения:
    1. Отказ системы происходит, если откажут все n элементов.
    2. Вероятность отказа каждого образца оборудования не зависит от состояния остальных (n -1) образцов (отказы статистически независимы).
    3. Отказывать может только оборудование, находящееся в работе, и условная вероятность отказа в интервале t, t+dt равна l dt; запасное оборудование не может выходить из строя до того, как оно будет включено в работу.
    4. Переключающие устройства считаются абсолютно надежными.
    5. Все элементы идентичны. Резервные элементы имеют характеристики как новые.

    Система способна выполнять требуемые от нее функции, если исправен по крайней мере один из n образцов оборудования. Таким образом, в этом случае надежность равна просто сумме вероятностей состояний системы, исключая состояние отказа, т.е.
    Р(t) = еxp(- l t) .(4.5.23)

    В качестве примера рассмотрим систему, состоящую из двух резервных образцов оборудования, включаемых замещением. Для того чтобы эта система работала, в момент времени t, нужно, чтобы к моменту t были исправны либо оба образца, либо один из двух. Поэтому
    Р(t) = еxp(- l t) =(exp(- l t))(1+ l t).(4.5.24)

    На рис. 4.5.12 показан график функции Р(t) и для сравнения приведен аналогичный график для нерезервированной системы.


    Рис. 4.5. 12. Функции надежности для дублированной системы свключением резерва замещением (1) и нерезервированнойсистемы (2)

    Пример 4.5.11. Система состоит из двух идентичных устройств, одно из которых функционирует, а другое находится в режиме ненагруженного резерва. Интенсивности отказов обоих устройств постоянны. Кроме того, предполагается, что в начале работы резервное устройство имеет такие же характеристики, как и новое. Требуется вычислить вероятность безотказной работы системы в течение 100 ч при условии, что интенсивности отказов устройств l =0,001 ч -1 .

    Решение. С помощью формулы (4.5.23) получаем Р(t) = (exp(- l t))(1+ l t).

    При заданных значениях t и l вероятность безотказной работы системы составляет

    Р(t) = е -0,1 (1+0,1) = 0,9953.

    Во многих случаях нельзя предполагать, что запасное оборудование не выходит из строя, пока его не включат в работу. Пусть l 1 - интенсивность отказов работающих образцов, а l 2 - резервных или запасных (l 2 > 0). В случае дублированной системы функция надежности имеет вид:
    Р(t) = ехр(-(l 1 + l 2 )t) + ехр(- l 1 t) - ехр(-(l 1 + l 2 )t).

    Данный результат для k=2 можно распространить на случай k=n. Действительно

    Р(t) = ехр(- l 1 (1+ a (n-1))t) (4.5.25)
    , где a =
    l 2 / l 1 > 0.

    Надежность резервированной системы в случае комбинаций отказов и внешних воздействий

    В некоторых случаях отказ системы возникает вследствие определенных комбинаций отказов образцов входящих в систему оборудования и (или) из-за внешних воздействий на эту систему. Рассмотрим, например, метеоспутник с двумя передатчиками информации, один из которых является резервным или запасным. Отказ системы (потеря связи со спутником) возникает при выходе из строя двух передатчиков или в тех случаях, когда солнечная активность создает непрерывные помехи радиосвязи. Если интенсивность отказов работающего передатчика равна l , а j - ожидаемая интенсивность появления радиопомех, то функция надежности системы
    Р(t) = еxp(-(l + j )t) + l t еxp(-(l + j )t).(4.5.26)

    Данный тип модели также применим в случаях, когда резерв по схеме замещения отсутствует. Например, предположим, что нефтепровод подвергается гидравлическим ударам, причем воздействие незначительными гидроударами происходит с интенсивностью l , а значительными - с интенсивнностью j . Для разрыва сварных швов (из-за накопления повреждений) трубопроводу следует получить n малых гидроударов или один значительный.

    Здесь состояние процесса разрушения представляется числом ударов (или повреждений), причем один мощный гидроудар равносилен n малых. Надежность или вероятность того, что трубопровод не будет разрушен действием микроударов к моменту времени t равна:

    Р(t) = еxp(-(l + j )t) .(4.5.27)

    Анализ надежности систем при множественных отказах

    Рассмотрим метод анализа надежности нагруженных элементов в случае статистически независимых и зависимых (множественных) отказов. Следует заметить, что этот метод может быть применен и в случае других моделей и распределений вероятностей. При разработке этого метода предполагается, что для каждого элемента системы существует некоторая вероятность появления множественных отказов.

    Как известно, множественные отказы действительно существуют, и для их учета в соответствующие формулы вводится параметр a . Этот параметр может быть определен на основе опыта эксплуатации резервированных систем или оборудования и представляет собой долю отка ов, вызываемых общей причиной . Другими словами, параметр а можно рассматривать как точечную оценку вероятности того, что отказ некоторого элемента относится к числу множественных отказов. При этом можно считать, что интенсивность отказов элемента имеет две взаимоисключающие составляющие, т. е. l = l 1 + l 2 , где l 1 - постоянная интенсивность статистически независимых отказов элемента, l 2 - интенсивность множественных отказов резервированной системы или элемента. Поскольку a = l 2 / l , то l 2 = a/ l , и следовательно, l 1 =(1- a ) l .

    Приведем формулы и зависимости для вероятности безотказной работы, интенсивности отказов и средней наработки на отказ в случае систем с параллельным и последовательным соединением элементов, а также систем с k исправными элементами из п и систем, элементы которых соединены по мостиковой схеме.

    Система с параллельным соединением элементов (рис. 4.5.13) - обычная параллельная схема, к которой последовательно подсоединен один элемент. Параллельная часть (I) схемы отображает независимые отказы в любой системе из n элементов, а последовательно соединенный элемент (II) - все множественные отказы системы.

    Рис. 4.5.13. Модифицированная система с параллельным соединением одинаковых элементов

    Гипотетический элемент, характеризуемый определенной вероятностью появления множественного отказа, последовательно соединен с элементами, которые характеризуются независимыми отказами. Отказ гипотетического последовательно соединенного элемента (т.е. множественный отказ) приводит к отказу всей системы. Предполагается, что все множественные отказы полностью взаимосвязаны. Вероятность безотказной работы такой системы определяется как R р ={1-(1-R 1) n } R 2 , где n - число одинаковых элементов; R 1 - вероятность безотказной работы элементов, обусловленная независимыми отказами; R 2 - вероятность безотказной работы системы, обусловленная множественными отказами.

    l 1 и l 2 выражение для вероятности безотказной работы принимает вид

    R р (t)={1-(1-e -(1- a ) l t ) n }e - al t ,(4.5.28)
    где t - время.

    Влияние множественных отказов на надежность системы с параллельным соединением элементов наглядно демонстрируется с помощью рис. 4.5.14 – 4.5.16; при увеличении значения параметра a вероятность безотказной работы такой системы уменьшается.

    Параметр a принимает значения от 0 до 1. При a = 0 модифицированная параллельная схема ведет себя как обычная параллельная схема, а при a =1 она действует как один элемент, т. е. все отказы системы являются множественными.

    Поскольку интенсивность отказов и среднее время наработки на отказ любой системы можно определить с помощью (4.3 .7 ) и формул
    ,
    ,
    с учетом выражения для
    R р (t ) получаем, что интенсивность отказов (рис. 4.5.17) и средняя наработка на отказ модифицированной системы соответственно равны
    ,(4.5.29)
    ,где .(4.5.30)


    Рис. 4.5.14. Зависимость вероятности безотказной работы системы с параллельным соединением двух элементов от параметра a


    Рис. 4.5.15. Зависимость вероятности безотказной работы системы с параллельным соединением трех элементов от параметра a


    Рис. 4.5.16. Зависимость вероятности безотказной работы системы с параллельным соединением четырех элементов от параметра a

    Рис. 4.5.17. Зависимость интенсивности отказов системы с параллельным соединением четырех элементов от параметра a

    Пример 4.5.12. Требуется определить вероятность безотказной работы системы, состоящей из двух одинаковых параллельно соединенных элементов, если l =0,001 ч -1 ; a =0,071; t=200 ч.

    Вероятность безотказной работы системы, состоящей из двух одинаковых параллельно соединенных элементов, для которой характерны множественные отказы, равна 0,95769. Вероятность безотказной работы системы, состоящей из двух параллельно соединенных элементов и характеризуемой только независимыми отказами, равна 0,96714.

    Система с k исправными элементами из п одинаковых элементов включает в себя гипотетический элемент, соответствующий множественным отказам и соединенный последовательно с обычной системой типа k из n, для которой характерны независимые отказы. Отказ, отображаемый этим гипотетическим элементом, вызывает отказ всей системы. Вероятность безотказной работы модифицированной системы с k исправными элементами из n можно вычислить по формуле

    ,(4.5.31)

    где R 1 - вероятность безотказной работы элемента, для которого характерны независимые отказы; R 2 - вероятность безотказной работы системы с k исправными элементами из n , для которой характерны множественные отказы.

    При постоянных интенсивностях l 1 и l 2 полученное выражение принимает вид

    .(4.5.32)

    Зависимость вероятности безотказной работы от параметра a для систем с двумя исправными элементами из трех и двумя и тремя исправными элементами из четырех показаны на рис. 4.5.18 - 4.5.20. При увеличении параметра a вероятность безотказной работы системы уменьшается на небольшую величину (l t).


    Рис. 4.5.18. Вероятность безотказной работы системы, сохраняющей работоспособность при отказе двух из n элементов


    Рис. 4.5.19. Вероятность безотказной работы системы, сохраняющей работоспособность при отказе двух из четырех элементов


    Рис. 4.5.20. Вероятность безотказной работы системы, сохраняющей работоспособность при отказе трех из четырех элементов

    Интенсивность отказов системы с k исправными элементами из n и средняя наработка на отказ могут быть определены следующим образом:


    ,(4.5.33)

    где h = {1-e -(1-b )l t },

    q = e (r a -r- a ) l t

    .(4.5.34)

    Пример 4.5.13. Требуется определить вероятность безотказной работы системы с двумя исправными элементами из трех, если l =0,0005 ч - 1 ; a =0,3; t =200 ч.

    С помощью выражения для R kn находим, что вероятность безотказной работы системы, в которой происходили множественные отказы, составляет 0,95772. Отметим, что для системы с независимыми отказами эта вероятность равна 0,97455.

    Система с параллельно-последовательным соединением элементов соответствует системе, состоящей из одинаковых элементов, для которых характерны независимые отказы, и ряда ветвей, содержащих воображаемые элементы, для которых характерны множественные отказы. Вероятность безотказной работы модифицированной системы с параллельно-последовательным (смешанным) соединением элементов можно определить с помощью формулы R ps ={1 - (1-) n } R 2 , где m - число одинаковых элементов в ответвлении, n - число одинаковых ответвлений.

    При постоянных интенсивностях отказов l 1 и l 2 это выражение принимает вид

    R рs (t) = e - bl t . (4.5.39)

    (здесь А=(1- a ) l ). Зависимость безотказной работы системы R b (t) для различных параметров a показана на рис. 4.5.21. При малых значениях l t вероятность безотказной работы системы с элементами, соединенными по мостиковой схеме, убывает с увеличением параметра a .


    Рис. 4.5.21. Зависимость вероятности безотказной работы системы, элементы которой соединены по мостиковой схеме, от параметра a

    Интенсивность отказов рассматриваемой системы и средняя наработка на отказ могут быть определены следующим образом:
    l + .(4.5.41)

    Пример 4.5.14. Требуется вычислить вероятность безотказной работы в течение 200 ч для системы с одинаковыми элементами, соединенными по мостиковой схеме, если l =0,0005 ч - 1 и a =0,3.

    Используя выражение для R b (t), находим, что вероятность безотказной работы системы с соединением элементов по мостиковой схеме составляет примерно 0,96; для системы с независимыми отказами (т.е. при a =0) эта вероятность равна 0,984.

    Модель надежности системы с множественными отказами

    Для анализа надежности системы, состоящей из двух неодинаковых элементов, для которых характерны множественные отказы, рассмотрим такую модель, при построении которой были сделаны следующие допущения и приняты следующие обозначения:

    Допущения (1) множественные отказы и отказы других типов статистически независимы; (2) множественные отказы связаны с выходом из строя не менее двух элементов; (3) при отказе одного из нагруженных резервированных элементов отказавший элемент восстанавливается, при отказе обоих элементов восстанавливается вся система; (4) интенсивность множественных отказов и интенсивность восстановлений постоянны.

    Обозначения
    P 0 (t) - вероятность того, что в момент времени t оба элемента функционируют;
    P 1 (t) - вероятность того, что в момент времени t элемент 1 вышел из строя, а элемент 2 функционирует;
    P 2 (t) - вероятность того, что в момент времени t эл мент 2 вышел из строя, а элемент 1 функционирует;
    P 3 (t) - вероятность того, что в момент времени t элементы 1 и 2 вышли из строя;
    P 4 (t) - вероятность того, что в момент времени t имеются специалисты и запасные элементы для восстановления обоих элементов;
    a - постоянный коэффициент, характеризующий наличие специалистов и запасных элементов;
    b - постоянная интенсивность множественных отказов;
    t - время.

    Рассмотрим три возможных случая восстановления элементов при их одновременном отказе:

    Случай 1. Запасные элементы, ремонтный инструмент и квалифицированные специалисты имеются для восстановления обоих элементов, т. е. элементы могут быть восстановлены одновременно .

    Случай 2. Запасные элементы, ремонтный инструмент и квалифицированные специалисты имеются только для восстановления одного элемента, т. е. может быть восстановлен только один элемент.

    Случай 3 . Запасные элементы, ремонтный инструмент и квалифицированные специалисты отсутствуют, и, кроме того, может существовать очередь на ремонтное обслуживание.

    Математическая модель системы, изображенной на рис. 4.5.22, представляет собой следующую систему дифференциальных уравнений первого порядка:

    P" 0 (t) = - ,
    P" 1 (t) = -(l 2 + m 1 )P 1 (t)+P 3 (t)

    Рис. 4.5.22. Модель готовности системы в случае множественных отказов

    Приравнивая в полученных уравнениях производные по времени нулю, для установившегося режима получаем

    - ,
    -(l 2 + m 1 )P 1 +P 3 m 2 +P 0 l 1 = 0,

    -(l 1 + m 2 )P 2 +P 0 l 2 +P 3 m 1 = 0,

    P 2 = ,

    P 3 = ,

    P 4 = .

    Стационарный коэффициент готовности может быть вычислен по формуле