Самодельная муфельная электрическая печь (малая). Составление температурных кривых предварительного нагрева В муфельной печи при температуре 820

В настоящее время довольно разнообразный сортамент ответственных труб нагревают и охлаждают в процессе термообработки в проходных муфельных печах различной конструкции с подачей в них защитного газа для получения светлой поверхности. Муфели обогреваются снаружи либо продуктами сгорания, либо электрическими нагревателями. Печи громоздкие, электрические нагреватели высокотемпературных печей часто перегорают, срок службы муфелей невелик из-за неравномерного нагрева и коробления. Однако основной их недостаток - отсутствие механизации: для организации непрерывного потока (по одной трубке через каждый муфель) на входной стороне печи трубы вручную стыкуются друг с другом с помощью втулок, а с выходной их вручную расстыковывают. Это снижает производительность труда и приводит к заметному браку, особенно на трубках мелких диаметров (6-12 мм). Конвейерные муфельные печи громоздки, неэкономичны и часто выходят из строя из-за обрывов цепей.

Организация непрерывного транспортирования труб малого диаметра (особенно тонкостенных) при их прямом нагреве кипящим слоем также вызывает значительные трудности, если не говорить о технологических процессах, в которых труба, как проволока, движется в виде сплошной бесконечной нити.

Сотрудниками Первоуральского новотрубного завода было предложено осуществлять термообработку (нагрев и охлаждение) холоднодеформированных труб перлитного класса с целью снятия напряжений, возникающих при деформации, в муфелях, обогреваемых снаружи кипящим слоем. Первый такой агрегат описан.

Предварительные опыты показали, что скорость нагрева в обогреваемых кипящим слоем муфелях примерно вдвое меньше скорости прямого нагрева этих трубок в кипящем слое частиц корунда 320 мм, но значительно больше, чем в пламенной газовой муфельной печи с цепным конвейером. При одинаковой температуре муфеля (920° С) время нагрева в муфелях трубы 25 X 2 (сталь 20) до 820° С составляло соответственно 2,5 и 6 мин, причем температура рабочего пространства пламенной печи была на 70-80° С выше температуры кипящего слоя. Различие скоростей нагрева в этих условиях объясняется большой массой металла цепей, прогревающихся вместе с трубой конвейерной печи и неравномерностью температур по длине муфеля. Этим же объясняется и примерно вдвое меньшая скорость охлаждения труб в конвейерной печи. Интересно, что в муфеле небольшого диаметра (25 мм) поверхность нагреваемых труб получалась светлой даже без подачи в них защитного газа за счет сгорания смазки, поскольку нагревали необезжиренные трубы непосредственно после стана ХПТР.

На основании этих данных проектный отдел завода и теплотехническая лаборатория совместно с УПИ спроектировали полностью механизированный пятиручьевой муфельный агрегат. Он включает в себя загрузочный стол со стеллажами; устройство, задающее в печь трубы и состоящее из пятиручьевого трайб аппарата с индивидуальным электроприводом и пневмонажимным устройством; камеру нагрева с кипящим слоем, в которой с шагом 175 мм расположены пять муфелей длиной ~2,8 м (длина обогреваемой части 1,3 м) диаметром 114 мм и толщиной стенки 10 мм из стали Х23Н18; трубчатый водяной холодильник (труба в трубе) длиной 1,7 м, являющийся фактически продолжением муфелей; устройство, принимающее трубы (магнитный ролик с индивидуальным электроприводом, скорость вращения которого равна скорости задающего устройства); рольганговый стол выдачи с гладкими роликами и цепным сбрасывателем.

Печь с кипящим слоем имеет камеру нагрева прямоугольного сечения, футерованную шамотом на жидком стекле, с газоплотной металлической обшивкой. Роль подины в печи выполняют две съемные газораспределительные решетки площадью 960 х 570 мм, каждая из которых имеет по 40 (фактически 39) колпачков из стали Х23Н18 с диаметром головки 50 мм, установленных с шагом 110 мм по углам квадрата. Каждый колпачок имеет по шесть отверстий диаметром 2,8 мм, через которые из камер смешения подается газо-воздушная смесь. Для сушки печи и разогрева предусмотрена двухпроводная горелка ГНП-2. Псевдоожижаемым материалом является корунд № 32 (320 мкм) ГОСТ 3647-71 и ОН-11-60 с высотой насыпного слоя (от отверстий в колпачках) 300 мм.

Агрегат был изготовлен и смонтирован силами завода и сдан в промышленную эксплуатацию в декабре 1970 г. Сметная стоимость печи составляет - 9 тыс. руб., из них на кладку 2,5 тыс. руб. и загружаемый в печь корунд ЭБ-32 1,5 тыс. руб. Фактические затраты на корунд существенно меньше, так как он стоит 293 руб/т, а его загрузка не превышает 1 т. Воздуходувка стоит -2 тыс. руб. Сметная стоимость механизации равна 11 тыс. руб, КИП и автоматики -4 тыс. руб.

Ускорение нагрева труб в агрегате с кипящим слоем позволило сократить его длину по сравнению с пламенными муфельными печами, что исключило необходимость стыковки труб. Так как длина печи с холодильником меньше длины термически обрабатываемых труб, то вне печи всегда имеется свободный конец трубы, находящийся либо в толкающем трубу трайб-аппарате до печи, либо в тянущем ее магнитном ролике после холодильника. Пройдя магнитный ролик, трубы попадают на цепной сбрасыватель, управляемый автоматически или дистанционно, и сбрасываются им со стола выдачи.

Единственной ручной операцией на агрегате является задача пакета труб в трайб-аппарат, причем через каждый муфель одновременно движется от 1 до 30 труб со скоростью 1,0-0,2 м/мин в зависимости от диаметра труб и толщины стенки.

Температура в печи поддерживается автоматически изменением расхода газа при постоянном для данной номинальной температуры расходе воздуха, заметно превышающем теоретически необходимое количество (а в = 1,15-2,5). Рабочие скорости псевдоожижения составляют 0,5-0,8 м/с при температуре печи 900-1100° С. Такой способ регулирования увеличивает потери с уходящими газами, но упрощает систему автоматики и позволяет регулировать температуру, практически не изменяя заданную скорость псевдоожижающего агента. С увеличением номинальной температуры расход воздуха увеличивается задатчиком.

Измерения с помощью зачеканенных термопар показали, что после разогрева печи и выхода ее на стационарный режим (примерно через 2 ч после розжига) температура всех муфелей становилась одинаковой как по длине, так и по сечению и практически равной температуре кипящего слоя. Лишь температура с входного конца муфеля была несколько ниже. Следовательно, в муфельных печах с кипящим слоем теплоотдача от слоя к муфелю не лимитирует скорость нагрева труб, которая определяется только внутренним теплообменом.

Печь нормально работает при 900-1000° С. На холостом ходу при 900; 950 и 1000° С приведенный к нормальным условиям расход природного газа равен соответственно 16, 21 и 24 м 3 /ч. Видно, что с увеличением производительности печи общий расход газа увеличивается незначительно, а удельный - резко сокращается. Приведены данные разных авторов по удельным расходам тепла, затрачиваемого на нагрев 1 т трубных изделий в проходных печах, видно, что в печи с кипящим слоем удельные расходы тепла в 1,9-1,25 раза меньшие, чем в пламенных печах.

Балансовые испытания, проведенные при температуре печи 1000° С и нагреве в ней 520 кг/ч труб размером 8 X 1,5 мм до 820° С, показали, что на нагрев труб расходуется 29,8% подводимого тепла, потери через кладку составляют 18,7%, потери с излучением через открытый верх печи 11%, на нагрев защитного газа (азота), подаваемого в муфели, идет 5,2%, потери с дымовыми газами 35,3%. Зависимость к. п. д. печи от ее производительности оказалась достаточно близкой к расчетной, заложенной в основу проекта.

Термограммы, полученные измерением температуры движущейся в муфеле трубы с вставленной в нее термопарой, показывают, что время нагрева каждой трубы до заданной температуры увеличивается при увеличении числа труб в муфеле, однако несмотря на вызываемое этим уменьшение скорости движения труб производительность печи при этом увеличивается. Если одна труба диаметром 40 X 2 мм при скорости 0,55 м/мин нагревается до 820° С за 120-130 с, то две - за 180 с, что при уменьшении скорости в 1,5 раза позволяет примерно на 35% повысить производительность.

При анализе данных необходимо иметь в виду: наличие в трубах крупнее 10 мм воды и смазки, замедляющих прогрев на начальном участке; медленный нагрев труб в части муфеля, расположенной в кладке; охлаждение выходного конца муфеля и труб теплопроводностью (муфель соединен с холодильником без теплоизолирующей прокладки, чтобы охлаждение труб начиналось уже в выходной части муфеля).

В описываемой печи, находившейся в непрерывной промышленной эксплуатации с декабря 1970 по март 1972 г., осуществляли отжиг труб промежуточных и конечных размеров (в том числе и на экспорт) сталей 10; 20; 35; 45; 15Х; 20Х; 40Х; 20А диаметром 4-12 мм с толщиной стенки <4,0 мм, а также готовых труб для ВАЗа из сталей 10, 20 диаметром 6-36 мм толщиной стенки <55,0 мм. Механические свойства как по длине отдельной трубы, так и по разным трубам всех пяти муфелей, заметно не различались (o в и о s обычно не более чем ±1-2 кгс/мм 2 , б не более ±4%), были стабильны по времени и вполне удовлетворяли техническим условиям. Металлографические исследования показали, что микроструктура металла труб после отжига в кипящем слое представляет собой равноосные зерна феррита и перлита.

При нормальных режимах эксплуатации термообработанные трубы имеют светлую поверхность. При увеличении производительности трубы выходят из холодильника нагретыми до температуры, превышающей 300° С, поэтому на поверхности появляются цвета побежалости (допускаемые техническими условиями).

В течение 1971 г. печь проработала под нагрузкой 6589 ч со средней производительностью 300 кг/ч, т. е. выдала -2000 т продукции (-1000 ч печь работала без загрузки - холостой ход, испытания, отработка режимов; -1000 ч составили простои), а за 2 месяца 1972 г. - 1116 ч со средней производительностью 322 кг/ч. Максимальная производительность печи при температуре слоя 1000° С на трубах готовых размеров (5 X 1-8 X 1 мм) достигает (от 3,6-4 до 1 мм и менее). За год эксплуатации на печи было обработано более 3,5 тыс. т. труб. Сравнительные показатели муфельных печей с кипящим слоем и пламенным нагревом приведены в табл. 27, составленной по цеховым данным.

Из табл. 27 видно, что съем труб с 1 м 2 пода печи при переходе на кипящий слой увеличен с 58,5 до 240 кг/(м 2 .ч), т. е. в шесть раз. Число обслуживающих рабочих сокращено вдвое (с двух до одного в смену). Стоимость печи с оборудованием и КИП составила 35,5 тыс. руб, экономический эффект - более 45 тыс. руб/год.

Используя положительный опыт работы этих печей, сотрудники того же цеха ПНТЗ в ноябре 1972 г. сдали в промышленную эксплуатацию третий десятимуфельный агрегат для светлой термообработки труб для ВАЗа и других заказчиков.

В состав агрегата рис. 74 входит стеллаж 1; роликовый стол задачи 2; три электромагнитных секционных ролика 3 с электроприводом, задающие трубы в печь; десять муфелей 4 диаметром 89x6 мм из стали Х23Н18, расположенных в камере нагрева 5 с кипящим слоем электрокорунда 0,4 мм; трубчатый водяной холодильник 6; электромагнитный секционный ролик 7 расстыковки труб; направляющие патрубки 8 из немагнитной стали с электрокатушками, сигнализирующими о прохождении трубы и открывающие желоба 10 сброса труб; электромагнитный сгонный ролик 9, перемещающий трубы в желоб сброса 10; ленточный транспортер для труб, падающих с желоба 10 в карман 11. Трубы перед подачей их в печь стыкуются двумя рабочими с помощью патрубков из немагнитной стали.

На выходе из холодильника трубы автоматически расстыковываются роликом 7, скорость вращения которого больше, чем роликов задачи труб, а патрубки свободно падают в корзину. В зоне стола выдачи и ленточного транспортера расположен кнопочный пульт ручного управления сбросом труб, который при необходимости обслуживается третьим рабочим. На агрегате термически обрабатывают трубы диаметром 12-30 мм с толщиной стенки 0,5-3,5 мм из углеродистых сталей. Основные требования, предъявляемые к качеству термически обработанных труб:

Качество обработанных на агрегате труб удовлетворяет указанным требованиям. Для получения светлой поверхности в муфели подается 70-80 м 3 /ч защитного газа (95-96% азота, 4-5% водорода). Муфели установлены на опорах, выполненных из тех же труб, что и муфели. Практика показывает, что оптимальный шаг между опорами для муфелей с толщиной стенки 5-7 и 10-14 мм составляет соответственно 300 и 500 мм. Наличие опор не влияет на псевдоожижение материала.

По длине камеры нагрева агрегата, аналогичной изображенным на рис. 69 и 74, внутренними размерами в плане 3,78x1,58 м и расширением вверху до 2,04 м, предусмотрено три газораспределительные решетки площадью 1,94 м 2 , и соответственно, три самостоятельные зоны регулирования температуры. В каждую решетку при изготовлении вварено по 180 колпачков с шагом 100x100 мм. Как и на печи, изображенной на рис. 74, колпачки изготовлены из трубки (сталь Х23Н18) диаметром 24 мм, один конец которой закован, а ниже просверлено по четыре отверстия диаметром 3 мм (толщина стенки трубки 7 мм). Такие колпачки, нетрудоемкие в изготовлении, отлично зарекомендовали себя на второй пятимуфельной печи (за все время эксплуатаци ни один не вышел из строя). В верхней части камеры нагрева предусмотрен дырчатый свод. Высота насыпного слоя 250 мм, сопротивление решетки и слоя (суммарное) ~8 кН/м 2 . Условная скорость пневдоожижения (в расчете на холодную смесь) на номинальном режиме и при пуске составляет соответственно 0,1-0,15, 0,22-0,25 м/с.

В соответствии с требованием технологического режима в трех зонах печи поддерживают разные температуры. При обработке труб готовых размеров для ВАЗа (трубы 30x1,5 и 36x2,1 мм, ТУЗ-208-69) они составляют 850, 820 и 810° С соответственно. Скорости перемещения труб при этом равны 0,8-1,2 м/мин, что обеспечивает среднюю производительность 600 кг/ч. Для труб готовых и предготовых размеров по ГОСТ 9567-60 и др. температуры по зонам составляют 950, 920 и 820° С, а скорости перемещения труб 0,8-8 м/мин в зависимости от толщины стенки. Средняя производительность на этих трубах достигает 1 т/ч.

Важно отметить, что переход с одного температурного режима на другой (например, повышение температуры с 820 до 950° С) длится всего 5-6 мин, что практически исключает простои печи при переходе на другой сортамент труб. Регулирование температуры осуществляется автоматически изменением расхода газа на каждую зону при постоянном расходе воздуха. Абсолютный расход топлива (природного газа) при таком режиме колеблется в пределах 55-80 м 3 /ч. Капитальные затраты по агрегату составили на печь 12 086, КИП и автоматику 8461 и на механическое оборудование 23 048 руб.

Поскольку этот агрегат представлял собой реконструированную муфельную пламенную печь, не удалось создать оптимальный вариант механизации. Между тем сейчас есть все исходные данные для создания механизации таких печей, практически полностью исключающей ручной труд. Такая печь нами разрабатывается в настоящее время. Тем не менее даже при существующей дорогой и не очень совершенной механизации расчетный экономический эффект от реконструкции печи составляет 81 тыс руб./год. Из методики расчета, приведенной в последней главе, следует, что применение кипящего слоя в муфельных агрегатах тем выгоднее, чем больше тепловая нагрузка муфеля, т. е. чем больше металла проходит через него в единицу времени. Именно поэтому агрегат с кипящим слоем в отличие от пламенного дает большую производительность при заполнении всего сечения муфеля трубами. Это означает, что муфельные агрегаты с кипящим слоем весьма перспективны и для светлого нагрева в муфелях достаточно массивных изделий (трубки, шпиндели, кольца и т. д.), который позволяет к тому же весьма просто механизировать их перемещение. В настоящее время нами заканчивается сооружение муфельного агрегата с кипящим слоем для нагрева подшипниковых колец на одном из заводов. Эксперименты показали, что кольца диаметром 130-140 мм толщиной 20 и шириной 30- 50 мм нагреваются до 1100-1150° С за 8-12 мин. Расчет по приведенной далее методике дает те же показатели.

На трубных заводах достаточно широко распространены муфельные конвейерные печи для светлой безрисочной обработки труб. В этих печах на нагрев конвейерной цепи, транспортирующей трубы в муфелях, тепла затрачивается в несколько раз больше, чем на нагрев самих труб, в результате чего резко увеличивается как время нагрева до заданной температуры, так и время охлаждения. Анализ показал, что применение кипящего слоя для обогрева муфелей позволяет в этих условиях существенно интенсифицировать теплообмен. Кроме того, обычно одна и та же цепь конвейера проходит и через печь, и через охладитель. Разделив один конвейер на две цепи (одна в пределах печи, другая в холодильнике), можно превратить недостаток конвейерных печей в их преимущество, ибо в этом случае первая цепь будет горячей практически по всей длине, т. е. ускорит нагрев труб, а вторая, холодная по всей длине, будет способствовать охлаждению труб. Уменьшение длины горячей цепи снизит механические и температурные нагрузки на нее и увеличит надежность ее работы. Такой агрегат в настоящее время разрабатывается нами совместно с сотрудниками ПНТЗ.

Администрация Общая оценка статьи: Опубликовано: 2012.05.21

Про муфельные печи слышал, наверняка, каждый, но редко кто возьмется объяснить не только строение, но и назначение данного устройства. Между тем, муфельная печь – это конструкция узкой специализации, которая предназначена для выплавки металлов, обжига глиняных или керамических изделий, стерилизации инструментов или выращивания некоторых кристаллов. Помимо производственных печей иногда встречается муфельная печь для дома, ведь широко известны изделия домашних мастеров.

Компактные печи фабричного производства, которые предназначены для домашнего использования, отличаются достаточно высокой стоимостью, поэтому все чаще речь заводится о самостоятельном строительстве устройства. Для полного понимания каждого этапа изготовления печи сначала следует ознакомиться с общими теоретическими вопросами, связанными с ее особенностями, строением, классификацией.

Готовый заводской вариант

Классификация

Первым признаком для разделения на подгруппы является внешний вид. По ориентировке печи разделяют на вертикальные и горизонтальные. Обработка материала может производиться в нормальном воздушном пространстве, в безвоздушном пространстве, в капсуле, заполненной инертным газом. Второй и третий способ обработки своими руками сделать будет невозможно, что нужно учесть перед началом работ.

Источником тепла дрова выступать не могут, так как в муфеле температура может достигать свыше 1000°С градусов, а древесина не обладает такой удельной теплотой сгорания. Поэтому используется только два варианта изготовления нагревателя:

  1. Первый вариант представляет газовая муфельная печь, которую можно встретить только на производстве. Известно, что любые манипуляции с газовым оборудованием сразу же пресекаются несколькими контролирующими органами, а уж об изготовлении каких-либо устройств кустарным способом и речи быть не может.
  2. Электрическая муфельная печь позволяет применить некое творчество при условии соблюдения всех необходимых условий безопасности.

Большая печь на производстве

Подготовка к работе

Любая работа должна начинаться с определенного подготовительного этапа. Даже если утвержден план действий, необходимо приготовить инструменты и материалы, иначе в работе могут возникать длительные перерывы, которые негативно скажутся на работоспособности мастера и качестве построенной конструкции.

Перед тем, как начнется непосредственное строительство, придется сразу приготовить болгарку для резки листового металла и обработки шамотного кирпича. Круги для болгарки должны быть соответствующими. Перечень пополнит электросварка с расходными материалами и прочий слесарный инструмент повседневного использования.

К материалу можно отнести нихромовую или фехралевую проволоку, базальтовую вату, кирпич шамотный и листовое железо толщиной не менее 2 мм. В зависимости от способа изготовления конструкции некоторые инструменты или материалы могут не пригодиться, а дополнительные будут приобретены в процессе.

Кустарно изготовленная печь

Некоторые готовые элементы для изготовления печи

При планировании работ придется проявить не только терпение и умение пользоваться инструментами, но и смекалку. Ведь нас окружает такое количество ненужных вещей, способных стать готовыми узловыми элементами некоторых конструкций. На данный момент мы воспользуемся готовым опытом и наблюдениями некоторых умельцев, позволяющими упростить процесс самостоятельного изготовления печи.

В качестве корпуса будущей печи можно использовать металлическую духовку. Наверняка вы знаете, где достать старую газовую плиту или электропечь. Если поверхность металла не повреждена коррозией, то находка может служить корпусом, так как она конструктивно приспособлена для выдерживания высоких температур. Останется только демонтировать лишние детали и избавиться от пластиковых элементов.

Старая духовка

Нагревательный элемент придется изготовить самостоятельно, так как во многих электроприборах он залит изоляционным веществом, и демонтировать его без повреждений вряд ли получится. Но в самостоятельном изготовлении есть один существенный плюс – возможность выполнить элемент нужной геометрии с заданными параметрами.

Фехраль использовать наиболее предпочтительно, так как он выдерживает более высокую температуру и контакт с воздухом ему не причиняет особого вреда, чего нельзя сказать про нихром.

Проволока должна иметь диаметр 2 мм. Диаметр витка и длину проволоки несложно вычислить, исходя из габаритов нагревательного элемента по элементарной физической формуле. Сразу нужно отметить, что полученная печь потребляет большую мощность. Ее значение достигает 4 кВт, значит, от щитка придется тянуть отдельную линию с автоматом-выключателем, рассчитанным на 25 А.

Готовая проволока

В качестве теплоизоляции нужно использовать материалы, которые не только обладают низкой теплопроводностью, но и выдерживают высокие температуры. Чтобы не заставлять читателя ворошить физические таблицы, сразу отметим, что в качестве подходящего материала выступает базальтовая вата, жаростойкий клей, который приобретается в магазине, и шамотный кирпич или шамотная глина. Если не обеспечить должной степени изоляции, то большая доля тепла будет уходить бесцельно, что приведет к лишним расходам энергии.

Самостоятельное изготовление

Если нет возможности отыскать старую духовку, то придется воспользоваться листовым металлом и электросваркой. По требуемым размерам с помощью болгарки вырезаются из листа металла стенки нашего будущего изделия. Чтобы упростить процесс, печь делают цилиндрической формы. Тогда полоска металла сворачивается в цилиндр и сваривается одним швом.

Металлический круг будет служить одним торцом, а с другой стороны несколько позже установится дверца. Конструкцию необходимо усилить, а для этого придется наварить несколько уголков на места соединения стенок цилиндра и круга.

Сгибаем лист металла в цилиндр

Изнутри стенки получившегося цилиндра обшиваются базальтовой ватой. Этот материал выбран неслучайно. Предельная температура при контакте с открытым огнем составляет 1114°С градусов, материал обладает плохой теплопроводностью, что в данных условиях нам просто необходимо, а также является безопасным для здоровья человека даже при критических температурах.

Грани шамотного кирпича обрабатываются болгаркой таким образом, чтобы в сечении он представлял собой трапецию. Из таких элементов можно составить своеобразное огнеупорное кольцо.

Создание огнеупорного кольца

Так как грани получатся под разными углами, а разбирать конструкцию придется, то рекомендуется на каждом кирпиче поставить порядковый номер. Уложив кирпичи на ровную поверхность так, чтобы внутренние грани «смотрели» вверх, сделайте неглубокие прорези под небольшим углом, в эти прорези будет вставлена спираль. Канавки должны изолировать витки спирали друг от друга и обеспечить распределение нагревательного элемента по всей активной зоне. Теперь снова потребуется собрать кирпичи в кольцо и стянуть их проволокой или хомутом.

Подготовленную спираль укладывают в канавку, а концы ее выводят наружу, где будут монтироваться соединительные клеммы. Кольцо со спиралью представляет нагревательный элемент печи.

Укладка спирали

Цилиндр с базальтовой ватой устанавливается торцом на горизонтальную плоскость. На дно его помещается шамотный кирпич, чтобы защитить круглую стенку от воздействия высокой температуры. Внутрь вставляется нагревательный элемент, и все пустоты заполняются жаростойким клеем. На высыхание устройства потребуется несколько дней. За это время можно придумать и изготовить дверцу для печи. Чем плотнее она будет закрывать топку, тем дольше будет служить самодельная спираль. Построенная своими руками муфельная печь способна плавить драгоценные металлы, обжигать глину, плавить некоторые металлы.

Для того, чтобы производить обжиг глиняных изделий небольшого размера в домашних условиях можно изготовить более простой вариант печи. Он состоит из электроплитки с открытым нагревательным элементом и керамическим горшком подходящего размера. Класть деталь непосредственно на спирали нельзя, поэтому под нее подкладывают шамотный кирпич и сверху накрывают горшком.

Материалы для создания печи

Недостатки самодельной конструкции

Каждое устройство не лишено определенных недостатков, а самодельное устройство их еще и преумножает. В условиях поставленной цели можно пожертвовать одними требованиями ради выполнения других. Однако перечень негативных последствий обязан знать каждый.

  • Самодельная конструкция лишена всяческих гарантий, в том числе, гарантий безопасности.
  • Испарение металла со спирали нагревателя может привести к тому, что он в виде примесей будет содержаться в составе обрабатываемого драгоценного металла.
  • Самодельная теплоизоляция не обеспечит полную концентрацию тепла в топке, поэтому корпус самодельной печи очень горячий и требует осторожного с ним обращения. Кстати, в этом заключается недостаток и некоторых фабричных моделей.
  • Отсутствие должной системы контроля и регулировки температуры может стать причиной того, что печь не сможет служить для выполнения определенной задачи, связанной с термической обработкой.

Готовые печи фабричного производства разработаны для выполнения достаточно узкого спектра задач, но это является, скорее, показателем профессионализма, нежели недостатком. Основные параметры и сфера применения конкретного устройства указаны в его паспорте.

Лидерами по производству компактных и стационарных муфельных печей являются такие компании, как TSMP Ltd (Англия), СНОЛ-ТЕРМ (Россия), CZYLOK (Польша), Daihan (Южная Корея). Представленный перечень отображает топовый список компаний по оценке поставщиков высокотемпературного оборудования на российский рынок.

Муфельная печь предназначена для равномерного нагревания веществ до разных температур. Присутствующий в ней муфель, защищает нагреваемый предмет от прямого воздействия продуктов горения.

Навигация:

Различают муфельные печи по нескольким критериям.

  • По источнику нагревания.
  • По режиму обработки.
  • По конструктивным данным.

Источником нагревания муфельной печи может быть газ или электричество.

Режим обработки бывает:

  • в обычной (воздушной) атмосфере;
  • в особом газовом окружении – водород, аргон, азот и другие газы;
  • при вакуумном давлении.

Конструктивно муфельные печи делятся на печи:

  • верхней загрузки;
  • горизонтальной завалки;
  • колпаковые – печь отделается от пода;
  • трубчатые печи.

Кроме этого, существует несколько видов печей по тепловым показателям:

  • печи с небольшой температурой: 100 — 500 градусов;
  • печи со средней температурой: 400 — 900 градусов;
  • печи с большой температурой: 400 — 1400 градусов;
  • печи с очень высокой температурой: до 1700 — 2000 градусов.

Примечание. От температурного режима муфельной печи прямо пропорционально зависит ее стоимость, т.е, чем выше максимальная отметка температуры, тем дороже будет печь.

К преимуществам муфельных печей относится защита обогреваемого вещества от продуктов горения топлива или испарений нагревательных элементов и равномерный его нагрев по всей камере.

В случае выхода из строя муфеля, конструкция печи позволяет оперативно произвести его замену, что значительно облегчает проведение ремонта.

Недостатком является небольшая скорость нагрева (хотя это не всегда необходимо). В муфельной печи невозможно производить скоростные режимы нагрева. Это связано с тем, что необходимо время для нагрева муфеля. Что влечет за собой еще один недостаток – дополнительные затраты энергии на разогрев.

Основная составляющая муфельной печи – это муфель, который изготавливается чаще всего из керамики. Этот материал является универсальным для изготовления печи разного рода. Бывают еще корундовые муфели, но их применяют только в химической среде.

Вокруг муфеля наматывается обогревательный элемент в виде проволоки и замазывается это керамической обмазкой.

Вокруг муфеля располагается теплоизоляционный материал и все это обшивается металлическим корпусом из листа металла толщиной 1,5-2 мм.

Так как нагрев печи начинается вокруг муфеля, то достичь больших температур (выше 1150 градусов) не представляется возможным. В связи с этим производители разработали специальный волокнистый материал для изготовления муфеля, который позволяет располагать нагревательные элементы изнутри. Это дает возможность увеличить температурный предел муфельных печей. Но недостатком волокнистого материала является его недолговечность: под действием газовых испарений, солей и масел от нагреваемого материала волокно разрушается.

Сегодня для высокотемпературных муфельных печей применяют японские очень качественные нагревательные элементы, которые позволяют достигать в печи температуры до 1750 градусов.

Печи, работающие на газообразном топливе, изначально имеют более высокие температурные показатели.

Для более равномерного нагрева рабочей камеры некоторые производители встраивают вентиляцию. А для вывода продуктов сгорания существует вытяжной механизм, который через трубу выводит дым и пар из печи.

Для контроля и регулирования температуры в печи используется электронный терморегулятор, который соединяется с нагревателем и термопарой. Терморегулятор позволяет контролировать не только температуру, но и время выдержки изделия в печи. Причем эти показатели имеют очень высокую точность, особенно в лабораторной муфельной печи, ведь от их значения и полученного результата зависит точность проводимых исследований.

Применение муфельных печей

Муфельная печь нашла широкое распространение, в первую очередь, как оборудование для термообработки металлов. Но, благодаря своим достоинствам, муфельная печь (купить которую можно в любом регионе России) намного расширила область своего применения, и это:

  • термообработка металлов (закалка, отпуск, отжиг, старение);
  • обжиг керамических материалов – окончательный этап обработки керамики;
  • озоление – превращение в золу исследуемого вещества без сгорания для проведения обследования;
  • кремация;
  • пробирный анализ – способ выявления и отделения драгоценных металлов (золота, серебра, платины) из руды, сплавов, готовых изделий;
  • высушивание – отделение влаги в виде воды или другого жидкого вещества из материалов;
  • стерилизация инструментов в медицине (стоматологии).

Термообработка металлов может производится в домашних условия, в лабораторных или в промышленных масштабах. Исходя из этого существует целый модельный ряд муфельных печей с разными объемами рабочей камеры, мощностями и максимальной температурой нагрева. Для личного применения можно купить муфельную печь для закалки ножей, для исследований подойдет муфельная печь лабораторная.

Для термообработки металлов и сплавов муфельная печь должна обладать особыми характеристиками.

В первую очередь, муфельная печь для закалки металла, отпуска и прочего должна иметь очень хорошие изоляционные характеристики. Обычно они обеспечиваются несколькими слоями: огнеупорным кирпичом, волокном из керамического материала и защитным кожухом из листового металла. Дно печи должно быть оборудовано специальными карбидокремниевыми плитами и добавочным поддоном для защиты от ударов обогревательных элементов при загрузке и выгрузке. И самое главное, электрическая муфельная печь должна иметь специальные нагревательные спирали из высококачественного сплава для обеспечения достаточно большой температуры обогрева – до 1400 градусов.

Муфельная печь лабораторная (цена зависит от мощности и конструктивных особенностей) может быть использована для нагревания материалов разного состава.

Муфельная печь для обжига керамики применяется в художественных и гончарных мастерских. Кроме обжига в ней проводится нагревание опок, расплавление стекла. Муфельная печь для керамики обладает температурным режимом до 1300 градусов и оснащается автоматическим регулятором, позволяющим медленно нагревать и охлаждать изделия без температурных скачков. Такой плавный переход необходим и когда производится обжиг глины в муфельной печи.

Купить муфельную печь для керамики можно прямо у производителя, что значительно снижает ее стоимость.

Примечание. Муфельная печь для обжига часто снабжается съемными нагревательными элементами, которые легко можно заменить при выходе из строя.

Муфельная печь для обжига керамики (цена зависит от размеров, мощности, способа загрузки и комплектации) может быть объемом внутренней камеры от 1л до 200 л и даже больше. Конструкция печи может быть круглой с загрузкой сверху, камерной с загрузкой впереди, есть колпаковые печи. Поэтому муфельная печь для обжига керамики, купить которую можно даже для домашнего использования, доступна для обширного поля деятельности любого мастера.

Для работы с драгоценными металлами, а также в стоматологии отлично подойдет маленькая муфельная печь или даже мини муфельная печь, объем рабочей камеры которой около двух литров.

Задумываясь о том, сколько стоит муфельная печь, следует учесть потребные характеристики, которые должны присутствовать в ней, и выбрать хорошего производителя. Муфельные печи российского производства получили хорошие отзывы среди потребителей и имеют неплохую ценовую политику.

Широкий модельный ряд позволяет выбрать муфельные печи РФ разной конструкции: горизонтальные и вертикальные муфельные печи с необходимым расположением загрузки, лабораторные муфельные печи (в Самаре находится производственная база).

Известны своим качеством муфельная печь Накал. Такая муфельная печь (купить в Москве ее можно сразу с доставкой), получила много положительных отзывов от ведущих предприятий различного направления.

Муфельная печь (купить в СПб можно разные модели) компании Электроприбор также хорошо себя зарекомендовала среди покупателей.

Хорошего качества является белорусская муфельная печь (купить в Минске ее не будет проблемой, так как есть много интернет-магазинов, имеющих в ассортименте такие печи).

Некоторые мастера берутся за изготовление муфельной печи своими руками, так как заводская муфельная печь (цена которой все-таки не маленькая) им не по карману. Изготавливая печь самостоятельно необходимо большое внимание уделить выполнению муфеля. Для домашнего пользования муфель можно выполнять из огнеупорной глины, формируя рабочую камеру вокруг картонного каркаса. Когда глина высохнет, картон убирается. Только перед дальнейшей сборкой обязательно нужно обжечь глиняный муфель, чтобы он затвердел и приобрел необходимую твердость. Дальнейшая сборка ничем не отличается от заводской.

Но таких специалистов самодельщиков не так много, большинство потребителей все же предпочитают муфельную печь купить, цена выбирается по своим возможностям.

Начало

Началась эта затея, как обычно начинается множество подобных затей – случайно зашёл в мастерскую к знакомому, а он показал новую «игрушку» – полуразобранную муфельную печь МП-2УМ (рис.1 ). Печь старая, «родной» блок управления отсутствует, термопары нет, но нагреватель целый и камера в хорошем состоянии. Естественно, у хозяина вопрос – а нельзя ли приделать к ней какое-нибудь самодельное управление? Пусть простое, пусть даже с небольшой точностью поддержания температуры, но чтобы печь заработала? Хм, наверное, можно… Но сначала неплохо было бы посмотреть документацию на неё, а потом уточнить техническое задание и оценить возможности его воплощения.

Итак, первое – документация есть в сети и легко находится по запросу «МП-2УМ» (также лежит в приложении к статье). Из перечня основных характеристик следует, что питание печи однофазное 220 В, потребляемая мощность примерно 2,6 кВт, верхний порог температуры – 1000°С.

Второе – нужно собрать электронный блок, который мог бы управлять питанием нагревателя с потребляемым током 12-13 А, а также мог бы показывать заданную и реальную температуры в камере. При конструировании блока управления следует не забывать, что нормального заземления в мастерской нет и неизвестно, когда будет.

Учитывая вышеперечисленные условия и имеющуюся электронную базу, решено собирать схему, измеряющую потенциал термопары и сравнивающую его с выставленным «заданным» значением. Сравнение проводить компаратором, выходной сигнал которого будет управлять реле, которое в свою очередь будет открывать и закрывать мощный симистор, через который сетевое напряжение 220 В будет поступать на нагревательный элемент. Отказ от фазоимпульсного управления симистором связан с большими токами в нагрузке и отсутствием заземления. Решили, что если при «дискретном» управлении окажется, что температура в камере колеблется в больших пределах, то тогда переделаем схему в «фазовую». Для индикации температуры можно применить стрелочный прибор. Питание схемы – обыкновенное трансформаторное, отказ от импульсного блока питания так же обусловлен отсутствием заземления.

Самым сложным было найти термопару. В нашем городишке магазины таким не торгуют, но выручили, как обычно, радиолюбители с их желанием вечно хранить в гаражах всякое радиоэлектронное барахло. Примерно через неделю после оповещения ближайших знакомых о «термопарной потребности» позвонил один из старейших радиолюбителей города и сказал, что есть какая-то, лежащая ещё с советских времён. Но её надо будет проверить – может оказаться, что она низкотемпературная хромель-копелевая. Да, конечно проверим, спасибо, ну, а для экспериментов подойдёт любая.

Небольшой «поход в сеть» на предмет просмотра того, что уже сделано другими по этой теме, показал, что в основном по такому принципу самодельщики их и конструируют –«термопара – усилитель – компаратор – силовое управление» (рис.2 ). Поэтому и мы не будем оригинальными – попробуем повторить уже проверенное.

Эксперименты

Сначала определимся с термопарой – она одна и она односпайная, поэтому в схеме компенсации изменения комнатной температуры не будет. Подключив к выводам термопары вольтметр и обдувая спай воздухом с разной температурой из термофена (рис.3 ), составляем таблицу потенциалов (рис.4 ) из которой видно, что напряжение растёт с градацией примерно в 5 мВ на каждые 100 градусов. Учитывая внешний вид проводников и сравнивая полученные показания с характеристиками разных спаев по таблицам, взятым из сети (рис.5 ), можно с большой вероятностью предположить, что применяемая термопара является хромель-алюмелевой (ТХА) и что её можно использовать длительное время при температуре 900-1000 °С.

После выяснения характеристик термопары экспериментируем со схемотехникой (рис.6 ). Схема проверялась без силовой части, в первых вариантах применялся операционный усилитель LM358, а в окончательный вариант был установлен LMV722. Он тоже двухканальный и тоже рассчитан на работу при однополярном питании (5 В), но, судя по описанию, имеет лучшую температурную стабильность. Хотя, очень может быть, что это была излишняя перестраховка, так как при применённой схемотехнике погрешность установки и поддержания заданной температуры и так достаточно велика.

Результаты

Окончательная схема, управления показана на рис.7 . Здесь потенциал с выводов термопары T1 поступает на прямой и инверсный входа операционного усилителя ОР1.1, имеющего коэффициент усиления примерно 34 dB (50 раз). Затем усиленный сигнал проходит через фильтр низкой частоты R5C2R6C3, где 50-тигерцовая помеха ослабляется до уровня –26 dB от уровня, приходящего с термопары (эта цепь была предварительно симулирована в программе , расчетный результат показан на рис.8 ). Далее отфильтрованное напряжение подаётся на инверсный вход операционного усилителя ОР1.2, выполняющего роль компаратора. Уровень порога срабатывания компаратора можно выбирать переменным резистором R12 (примерно от 0,1 В до 2,5 В). Максимальное значение зависит от схемы включения регулируемого стабилитрона VR2, на котором собран источник образцового напряжения.

Для того, чтобы компаратор не имел «дребезга» переключений при близких по уровню входных напряжениях, в него введена цепь положительной обратной связи – установлен высокоомный резистор R14. Это позволяет при каждом срабатывании компаратора смещать уровень образцового напряжения на несколько милливольт, что приводит к триггерному режиму и исключает «дребезг». Выходное напряжение компаратора через токоограничительный резистор R17 подаётся на базу транзистора VT1, управляющего работой реле К1, контакты которого открывают или закрывают симистор VS1, через который напряжение 220 В подаётся в нагреватель муфельной печи.

Блок питания электронной части выполнен на трансформаторе Tr1. Сетевое напряжение поступает на первичную обмотку через фильтр низкой частоты C8L1L2C9. Переменное напряжение со вторичной обмотки выпрямляется мостом на диодах VD2…VD5 и сгладившись на конденсаторе С7 на уровне около +15 В, поступает на вход микросхемы-стабилизатора VR1, с выхода которой получаем стабилизированные +5 В для питания ОР1. Для работы реле К1 берётся нестабилизированное напряжение +15 В, избыточное напряжение «гасится» на резисторе R19.

Появление напряжения в блоке питания индицируется зелёным светодиодом HL1. Режим срабатывания реле К1, а значит и процесс нагрева печи, показывает светодиод HL2 с красным цветом свечения.

Стрелочный прибор Р1 служит для индикации температуры в камере печи при левом положении кнопочного переключателя S1 и требуемой температуры при правом положении S1.

Детали и конструкция

Детали в схеме применены как обыкновенные выводные, так и рассчитанные на поверхностный монтаж. Почти все они установлены на печатной плате из одностороннего фольгированного текстолита размером 100х145 мм. На ней же закреплен трансформатор питания, элементы сетевого фильтра и радиатор с симистором. На рис.9 показан вид на плату со стороны печати (файл в формате программы находится в приложении к статье, рисунок при ЛУТ надо «зеркалить»). Вариант установки платы в корпус показан на рис. 10 . Здесь же видны закрепленные на передней стенке стрелочный прибор Р1, светодиоды HL1 и HL2, кнопка S1, резистор R12 и пакетный переключатель S2.

Ферритовые кольцевые сердечники для сетевого фильтра взяты из старого блока питания компьютера и затем обмотаны до заполнения проводом в изоляции. Можно использовать дроссели и другого типа, но тогда потребуется внести необходимую правку в печатную плату.

Уже перед самой установкой блока управления на печь, в разрыв одного из проводников, идущих от фильтра к трансформатору был впаян обрывной резистор. Его цель не столько защищать БП, сколько понизить добротность резонансного контура, получающегося при шунтировании первичной обмотки трансформатора конденсатором С9.

Предохранитель F1 впаян на вводе 220 В в плату (установлен вертикально).

Трансформатор питания подойдёт любой, мощностью более 3…5 Вт и с напряжением на вторичной обмотке в пределах 10…17 В. Можно и с меньшим, то тогда потребуется установка реле на более низкое рабочее напряжение срабатывания (например, пятивольтовое).

Операционный усилитель ОР1 можно заменить на LM358, транзистор VT1 на близкий по параметрам, имеющий статический коэффициент передачи тока более 50 и рабочий ток коллектора более 50…100 мА (КТ3102, КТ3117). На печатной плате разведено место и для установки транзистора в smd исполнении (ВС817, ВС846, ВС847).

Резисторы R3 и R4 сопротивлением 50 кОм - это 4 резистора номиналом 100 кОм, по два "в параллель".

R15 и R16 припаяны к выводам светодиодов HL1, HL2.

Реле К1 – OSA-SS-212DM5. Резистор R19 набран из нескольких последовательно включенных для того, чтобы не перегревался.

Переменный резистор R12 – RK-1111N.

Кнопочный переключатель S1 – КМ1-I. Пакетный выключатель S2 – ПВ 3-16 (исполнение 1) или подобный из серии ПВ или ПП под нужное количество полюсов.

Симистор VS1 – ТС132-40-10 или другой из серий ТС122…142, подходящий по току и напряжению. Элементы R20, R21, R22 и C10 распаяны навесным монтажом на выводах симистора. Радиатор взят из старого компьютерного блока питания.

В качестве стрелочного электроизмерительного прибора Р1 подойдёт любой подходящего размера и с чувствительностью до 1 мА.

Проводники, идущие от термопары к блоку управления сделаны максимально короткими и выполнены в виде симметричной четырёхпроводной линии (как описано ).

Силовой вводной кабель имеет сечение жил около 1,5 кв.мм.

Наладка и настройка

Отлаживать схему лучше поэтапно. Т.е. запаять элементы выпрямителя со стабилизаторами напряжения – проверить напряжения. Спаять электронную часть, подключить термопару – проверить пороги срабатывания реле (на этом этапе понадобится или какой-то нагревательный элемент, подключенный к внешнему дополнительному блоку питания (рис.11 ), или хотя бы свеча или зажигалка). Затем распаять всю силовую часть и, подключив нагрузку (например, электрическую лампочку (рис.12 и рис.13 )) убедиться, что блок управления поддерживает выставленную температуру, включая и выключая лампочку.

Настройка может понадобиться только в усилительной части – здесь главное, чтобы напряжение на выходе ОР1.1 при максимальном нагреве термопары не превышало уровня 2,5 В. Поэтому если выходное напряжение велико – то его следует понизить изменением коэффициента усиления каскада (уменьшив сопротивление резисторов R3 и R4). Если же используется термопара с малым выходным значением ЭДС и напряжение на выходе ОР1.1 получается небольшим – то в этом случае нужно увеличить коэффициент усиления каскада.

Номинал подстроечного резистора R7 зависит от чувствительности применяемого прибора Р1.

Можно собрать вариант блока управления без индикации напряжения и, соответственно, без режима предварительной установки нужного температурного порога – т.е. удалить из схемы S1, Р1 и R7 и тогда для выбора температуры следует сделать риску на ручке резистора R12 и на корпусе блока нарисовать шкалу с температурными отметками.

Провести калибровку шкалы несложно – на нижних пределах это можно сделать с помощью термофена паяльника (но нужно как можно больше прогревать термопару, чтобы её длинные и относительно холодные выводы не остужали место термоспая). А более высокие температуры можно определить по плавлению разных металлов в камере печи (рис.14 ) – процесс это относительно долгий, так как требуется изменять установки малым шагом и давать печи достаточное время для прогрева.

Фото, показанное на рис. 15 , сделано при первых включениях в мастерской. Температурная калибровка ещё не была сделана, поэтому шкала прибор чистая – в дальнейшем на ней появится множество разноцветных меток, нанесённых маркером прямо на стекло.

Через некоторое время владелец печи позвонил и пожаловался на то, что перестал загораться красный светодиод. При проверке оказалось, что он вышел из строя. Скорее всего, это произошло из-за того, что при последнем включении проверялись возможности печи и камера, со слов владельца, нагревалась до белого цвета. Светодиод заменили, блок управления переносить не стали – во-первых, может быть, дело было и не в перегреве блока управления, а во-вторых, больше таких экстремальных режимов не будет, так как нужды в таких температурах нет.

Андрей Гольцов, r9o-11, г. Искитим, лето 2017

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
OP1 Операционный усилитель

LMV722

1 возможна замена на LM358 В блокнот
VR1 Линейный регулятор

LM78L05

1 В блокнот
VR2 ИС источника опорного напряжения

TL431

1 В блокнот
VT1 Биполярный транзистор

КТ315В

1 В блокнот
HL1 Светодиод

АЛ307ВМ

1 В блокнот
HL2 Светодиод

АЛ307АМ

1 В блокнот
VD1...VD5 Выпрямительный диод

1N4003

5 В блокнот
VS1 Тиристор & Симистор

ТС132-40-12

1 В блокнот
R1, R2, R5, R6, R9, R17 Резистор

1 кОм

6 smd 0805 В блокнот
R3, R4 Резистор

100 кОм

4 см. текст В блокнот
R8, R10, R11 Резистор

15 кОм

3 smd 0805 В блокнот
R13 Резистор

51 Ом

1 smd 0805 В блокнот
R14 Резистор

1.5 МОм

1 smd или МЛТ-0,125 В блокнот
R15, R16 Резистор

1.2 кОм

2 МЛТ-0,125 В блокнот
R18 Резистор

510 Ом

1 smd 0805 В блокнот
R19 Резистор

160 Ом

1 smd 0805, см. текст В блокнот
R20 Резистор

300 Ом

1 МЛТ-2 В блокнот
R21 Резистор

Лабораторной муфельной печью называется специальное высокотемпературное нагревательное оборудование , предназначенное для эксплуатации в лабораторных условиях. Данное устройство представляет собой печь, имеющую особую конструкцию.

Она предусматривает полное отсутствие взаимодействия нагреваемых предметов с различными компонентами, выделяющимися в воздух в результате сгорания топлива (сажей, газообразными веществами, а также копотью ).

Для создания таких условий нагревания применяется муфель - огнеупорная камера, которая является своеобразной преградой между нагреваемым изделием и используемым топливом.

Что представляет из себя лабораторная муфельная печь?

Большинство таких муфелей изготавливается из огнестойкого кирпича, жаропрочной стали либо высокопрочного керамического волокна . Именно за счет данного приспособления производители имеют возможность предотвратить загрязнение посторонними веществами различных дорогих металлов, а также химически чистых образцов.

Благодаря тому, что оборудование обладает специальными техническими характеристиками, оно подходит для эксплуатации во многих сферах промышленности:

  • в химических лабораториях;
  • на предприятиях, занимающихся производством ювелирных изделий ;
  • в геофизических лабораториях;
  • на предприятиях, которые изготавливают восковые предметы ;
  • в пищевой промышленности;
  • на предприятиях, выполняющих купелирование разных благородных металлов ;
  • в стоматологических центрах;
  • для выполнения различных аналитических работ (нагрев и высушивание, сжигание или выращивание кристаллов);
  • для обжига различных форм для литья;
  • для изготовления изделий из фарфора либо керамики ;
  • для плавки , а также закалки различных металлов и их сплавов;
  • для проведения кремации .

Современное оборудование должно обязательно обладать следующими характеристиками:

  1. Достаточное внутреннее пространство для того чтобы обрабатываемые предметы свободно помещались внутрь прибора.
  2. Большой температурный диапазон , позволяющий выполнять разные виды работ.
  3. Терморегулятор .
  4. Система вытяжки .
  5. Возможность подключения к компьютеру (требование предъявляется к некоторым моделям приборов).

Особенности конструкции

Оборудование имеет особую схему строения, которая приспособлена для создания специальных условий обработки различных изделий. Основное отличие от печей других видов заключается в наличии огнеупорной камеры или так называемого муфеля. Это создает преграду, которая предотвращает взаимодействие поверхности материалов с газообразными веществами, выделяющимися из используемого топлива.

Для изготовления муфеля — основной части устройства — и других элементов производители используют, как правило, жаростойкую сталь, огнеупорный кирпич, а также керамическое волокно, которое обладает высокой прочностью.

Фото 1. Схематичное изображение устройства лабораторной муфельной печи. Указаны только основные части.

Как правильно подобрать нужное устройство?

Для максимально эффективной эксплуатации оборудования нужно обращать внимание на следующие его характеристики:

  • параметры;
  • максимально возможные нагрузки;
  • мощность;
  • предельная температура обжига;
  • рабочее напряжение;
  • напряжение питания;
  • равномерность прогрева;
  • безопасность функционирования оборудования;
  • стоимость.

Прежде всего необходимо определиться с объемом рабочей камеры, а также с температурным диапазоном . Кроме того, обязательно нужно обратить внимание на сложность нагрева .

Виды лабораторных печей

Не менее важными показателями при выборе оборудования служит скорость и равномерность прогрева муфельной камеры.

В зависимости от индивидуальных требований, можно подобрать горизонтальную либо вертикальную печь: первая отличается довольно большой вместительностью, а вторая нагревается за короткий промежуток времени.

Лабораторные муфельные печи оснащаются открытыми либо закрытыми нагревательными элементами . Устройства первого типа отлично подойдут для эксплуатации в условиях, когда требуется прогревать камеру до высокой температуры за небольшое время . Однако такое оборудование сильнее подвергается негативному воздействию различных агрессивных веществ, выделяющихся во время обработки предметов.

Печи, в которых используется закрытый нагревательный элемент, отличаются более продолжительным эксплуатационным сроком , равномерным нагревом рабочей камеры, но для максимального прогревания требуется гораздо больше времени. Существенным недостатком устройств данного вида является то, что при поломке нагревательного элемента придется менять полностью всю камеру.

Наиболее простой конструкцией обладает оборудование, имеющее одноступенчатый терморегулятор . Его основная особенность — с самого начала камера нагревается до определенной температуры, а затем она поддерживается на протяжении рабочего процесса. Чаще всего эти печи используются для выполнения таких простых задач, как сушка или обжиг.

Для более сложной аналитической работы предназначаются муфельные печи, которые функционируют за счет специального программного управления .

Они позволяют настраивать процесс нагрева на несколько разных уровней. Контроль происходит с помощью микропроцессора с цифровым индикатором и звуковым сигнализатором.

При необходимости программу можно запустить в автоматическом режиме.

Чтобы выбрать исправную печь, необходимо проверить оборудование на отсутствие каких-либо механических повреждений (сколов, потертостей, царапин и других) на всех составных элементах.

Полезное видео

Ознакомьтесь с видео, в котором показано, как выглядит муфельная печь большого объема для обработки металлов.