Назначение упп. Применение микросхемы КР1182ПМ1. Плавный пуск электродвигателя. Принцип работы устройства плавного пуска

Устройство плавного пуска - электротехническое устройство, используемое в асинхронных электродвигателях, которое позволяет во время запуска удерживать параметры двигателя (тока, напряжения и т.д.) в в безопасных пределах. Его применение уменьшает пусковые токи, снижает вероятность перегрева двигателя, устраняет рывки в механических приводах, что, в конечном итоге, повышает срок службы электродвигателя.

Назначение

Управление процессом запуска, работы и остановки электродвигателей. Основными проблемами асинхронных электродвигателей являются:

  • невозможность согласования крутящего момента двигателя с моментом нагрузки,
  • высокий пусковой ток.

Во время пуска крутящий момент за доли секунды часто достигает 150-200%, что может привести к выходу из строя кинематической цепи привода. При этом стартовый ток может быть в 6-8 раз больше номинального, порождая проблемы со стабильностью питания. Устройство плавного пуска позволяют избежать этих проблем, делая разгон и торможение двигателя более медленными. Это позволяет снизить пусковые токи и избежать рывков в механической части привода или гидравлических ударов в трубах и задвижках в момент пуска и остановки двигателей.

Принцип действия устройство плавного пуска

Основной проблемой асинхронных электродвигателей является то, что момент силы, развиваемый электродвигателем, пропорционален квадрату приложенного к нему напряжения, что создаёт резкие рывки ротора при пуске и остановке двигателя, которые, в свою очередь, вызывают большой индукционный ток.

Софтстартеры могут быть как механическими, так и электрическими, либо сочетать то и другое.

Механические устройства непосредственно противодействуют резкому нарастанию оборотов двигателя, ограничивая крутящий момент. Они могут представлять собой тормозные колодки, жидкостные муфты, магнитные блокираторы, противовесы с дробью и прочее.

Данные электрические устройства позволяют постепенно повышать ток или напряжение от начального пониженного уровня (опорного напряжения) до максимального, чтобы плавно запустить и разогнать электродвигатель до его номинальных оборотов. Такие УПП обычно используют амплитудные методы управления и поэтому справляются с запуском оборудования в холостом или слабо нагруженном режиме. Более современное поколение УПП (например, устройства ЭнерджиСейвер) используют фазовые методы управления и потому способны запускать электроприводы, характеризующиеся тяжелыми пусковыми режимами "номинал в номинал". Такие УПП позволяют производить запуски чаще и имеют встроенный режим энергосбережения и коррекции коэффициента мощности.

Выбор устройства плавного пуска


При включении асинхронного двигателя в его роторе на короткое время возникает ток короткого замыкания, сила которого после набора оборотов снижается до номинального значения, соответствующего потребляемой электрической машиной мощности. Это явление усугубляется тем, что в момент разгона скачкообразно растет и крутящий момент на валу. В результате может произойти срабатывание защитных автоматических выключателей, а если они не установлены, то и выход из строя других электротехнических устройств, подключенных к той же линии. И в любом случае, даже если аварии не произошло, при пуске электромоторов отмечается повышенный расход электроэнергии. Для компенсации или полного устранения этого явления используются устройства плавного пуска (УПП).

Как реализуется плавный пуск

Чтобы плавно запустить электродвигатель и не допустить броска тока, используются два способа:

  1. Ограничивают ток в обмотке ротора. Для этого ее делают состоящей из трех катушек, соединенных по схеме «звезда». Их свободные концы выводят на контактные кольца (коллекторы), закрепленные на хвостовике вала. К коллектору подключают реостат, сопротивление которого в момент пуска максимальное. По мере его снижения ток ротора растет и двигатель раскручивается. Такие машины называются двигателями с фазным ротором. Они используются в крановом оборудовании и в качестве тяговых электромоторов троллейбусов, трамваев.
  2. Уменьшают напряжение и токи, подаваемые на статор. В свою очередь, это реализуется с помощью:

а) автотрансформатора или реостата;

б) ключевыми схемами на базе тиристоров или симисторов.

Именно ключевые схемы и являются основой построения электротехнических приборов, которые принято назвать устройствами плавного пуска или софтстартерами. Обратите внимание, что частотные преобразователи так же позволяют плавно запустить электродвигатель, но они лишь компенсируют резкое возрастание крутящего момента, не ограничивая при этом пускового тока.

Принцип работы ключевой схемы основывается на том, что тиристоры отпираются на определенное время в момент прохождения синусоидой ноля. Обычно в той части фазы, когда напряжение растет. Реже – при его падении. В результате на выходе УПП регистрируется пульсирующее напряжение, форма которого лишь приблизительно похожа на синусоиду. Амплитуда этой кривой растет по мере того, как увеличивается временной интервал, когда тиристор отперт.

Критерии выбора софтстартера

По степени снижения степени важности критерии выбора устройства располагаются в следующей последовательности:

  • Мощность.
  • Количество управляемых фаз.
  • Обратная связь.
  • Функциональность.
  • Способ управления.
  • Дополнительные возможности.

Мощность

Главным параметром УПП является величина I ном – сила тока, на которую рассчитаны тиристоры. Она должна быть в несколько раз больше значения силы тока, проходящего через обмотку двигателя, вышедшего на номинальные обороты. Кратность зависит от тяжести пуска. Если он легкий – металлорежущие станки, вентиляторы, насосы, то пусковой ток в три раза выше номинального. Тяжелый пуск характерен для приводов, имеющих значительный момент инерции. Таковы, например, вертикальные конвейеры, пилорамы, прессы. Ток выше номинального в пять раз. Существует и особо тяжелый пуск, который сопровождает работу поршневых насосов, центрифуг, ленточных пил... Тогда I ном софтстартера должен быть в 8-10 раз больше.

Тяжесть пуска влияет и на время его завершения. Он может длиться от десяти до сорока секунд. За это время тиристоры сильно нагреваются, поскольку рассеивают часть электрической мощности. Для повторения им надо остыть, а на это уходит столько же, сколько на рабочий цикл. Поэтому если технологический процесс требует частого включения-выключения, то выбирайте софтстартер как для тяжелого пуска. Даже если ваше устройство не нагружено и легко набирает обороты.

Количество фаз

Можно управлять одной, двумя или тремя фазами. В первом случае устройство в большей степени смягчает рост пускового момента, чем тока. Чаще всего используются двухфазные пускатели. А для случаев тяжелого и особо тяжелого пуска – трехфазные.

Обратная связь

УПП может работать по заданной программе – увеличить напряжение до номинала за указанное время. Это наиболее простое и распространенное решение. Наличие обратной связи делает процесс управления более гибким. Параметрами для нее служат сравнение напряжения и вращающего момента или фазный сдвиг между токами ротора и статора.

Функциональность

Возможность работать на разгон или торможение. Наличие дополнительного контактора, который шунтирует ключевую схему и позволяет ей остыть, а также ликвидирует несимметричность фаз из-за нарушения формы синусоиды, которое приводит к перегреву обмоток.

Способ управления

Бывает аналоговым, посредством вращения потенциометров на панели, и цифровым, с применением цифрового микроконтроллера.

Дополнительные функции

Все виды защиты, режим экономии электроэнергии, возможность пуска с рывка, работы на пониженной скорости (псевдочастотное регулирование).

Правильно подобранный УПП увеличивает вдвое рабочий ресурс электродвигателей, экономит до 30 процентов электроэнергии.

Зачем нужно устройство плавного пуска (софтстартера)

Все чаще при запуске электроприводов насосов, вентиляторов применяются устройство плавного пуска (софтстартер). С чем это связано? В нашей статье мы постараемся осветить этот вопрос.

Асинхронные двигатели используются уже более ста лет, и за это время относительно мало изменилось их функционирование. Запуск этих устройств и связанные с ним проблемы хорошо известны их владельцам. Пусковые токи приводят к просадкам напряжения и перегрузкам проводки, вследствие чего:

    некоторая электротехника может самопроизвольно отключаться;

    возможен сбой оборудования и т. д.

Своевременно установленный приобретенный и подключенный софтстартер позволяет избежать лишних трат денег и головной боли.

Что такое пусковой ток

В основе принципа действия асинхронных двигателей лежит явление электромагнитной индукции. Наращивание обратной электродвижущей силы (э. д. с), которая создается путем применения изменяющегося магнитного поля во время запуска двигателя, приводит к переходным процессам в электрической системе. Этот переходной режим может повлиять на систему электропитания и другое оборудование, подключенное к нему.

Во время запуска электродвигатель разгоняется до полной скорости. Продолжительность начальных переходных процессов зависит от конструкции агрегата и характеристик нагрузки. Пусковой момент должен быть наибольшим, а пусковые токи – наименьшими. Последние влекут за собой пагубные последствия для самого агрегата, системы электроснабжения и оборудования, подключенного к нему.

В течение начального периода пусковой ток может достигать пяти-восьмикратного тока полной нагрузки. Во время пуска электродвигателя кабели вынуждены пропускать больше тока, чем во время периода стабильного состояния. Падение напряжения в системе также будет намного больше при пуске, чем во время стабильной работы – это становится особенно очевидным при запуске мощного агрегата или большого числа электродвигателей одновременно.

Способы защиты электродвигателя

Поскольку использование электродвигателей стало широко распространенным, преодоление проблем с их запуском стало проблемой. На протяжении многих лет для решения этих задач были разработано несколько методов, каждый из которых имеет свои преимущества и ограничения.

В последнее время были достигнуты значительные успехи в использовании электроники в регулировании электроэнергии для двигателей. Все чаще при запуске электроприводов насосов, вентиляторов применяются устройство плавного пуска. Всё дело в том, что прибор имеет ряд особенностей.

Особенностью устройства пуска является то, что он плавно подаёт на обмотки двигателя напряжение от нуля до номинального значения, позволяя двигателю плавно разгоняться до максимальной скорости. Развиваемый электродвигателем механический момент пропорционален квадрату приложенного к нему напряжения.

В процессе пуска УПП постепенно увеличивает подаваемое напряжение, и электромотор разгоняется до номинальной скорости вращения без большого момента и пиковых скачков тока.

Виды устройств плавного пуска

На сегодняшний день для плавного запуска техники используются три типа УПП: с одной, двумя и со всеми управляемыми фазами.

Первый тип применяется для однофазного двигателя для обеспечения надежной защиты от перегрузки, перегрева и снижения влияния электромагнитных помех.

Как правило, схема второго типа помимо полупроводниковой платы управления включает в себя байпасный контактор. После того как двигатель раскрутится до номинальной скорости, байпасный контактор срабатывает и обеспечивает прямую подачу напряжения на электродвигатель.

Трехфазный тип является самым оптимальным и технически совершенным решением. Он обеспечивает ограничение тока и силы магнитного поля без перекосов по фазам.

Зачем же нужно устройство плавного пуска?

Благодаря относительно невысокой цене популярность софтстартеров набирает обороты на современном рынке промышленной и бытовой техники. УПП для асинхронного электродвигателя необходимо для продления его срока службы. Большим преимуществом софтстартера является то, что пуск осуществляется с плавным ускорением, без рывков.

Плавный пуск электродвигателя в последнее время применяется все чаще. Области его применения разнообразны и многочисленны. Это промышленность, электротранспорт, коммунальное и сельское хозяйство. Применение подобных устройств позволяет значительно снизить пусковые нагрузки на электродвигатель и исполнительные механизмы, тем самым, продлив срок их службы.

Пусковые токи

Пусковые токи достигают значений в 7…10 раз выше, чем в рабочем режиме. Это приводит к «просаживанию» напряжения в питающей сети, что отрицательно сказывается не только на работе остальных потребителей, но и самого двигателя. Время пуска затягивается, что может привести к перегреву обмоток и постепенному разрушению их изоляции. Это способствует преждевременному выходу электродвигателя из строя.

Устройства плавного пуска позволяют значительно снизить пусковые нагрузки на электродвигатель и электросеть, что особенно актуально в сельской местности либо при питании двигателя от автономной электростанции.

Перегрузки исполнительных механизмов

В момент запуска двигателя момент на его валу очень нестабилен и превышает номинальное значение более чем в пять раз. Поэтому пусковые нагрузки исполнительных механизмов также повышены по сравнению с работой в установившемся режиме и могут достигать до 500 процентов. Нестабильность момента при пуске приводит к ударным нагрузкам на зубья шестерен, срезанию шпонок и иногда даже к скручиванию валов.

Устройства плавного пуска электродвигателя значительно уменьшают пусковые нагрузки на механизм: плавно выбираются зазоры между зубьями шестерен, что препятствует их поломке. В ременных передачах также плавно натягиваются приводные ремни, что уменьшает износ механизмов.

Кроме плавного пуска на работе механизмов благотворно сказывается режим плавного торможения. Если двигатель приводит в движение насос, то плавное торможение позволяет избежать гидравлического удара при выключении агрегата.

Устройства плавного пуска промышленного изготовления

В настоящее время выпускается многими фирмами, например Siemens, Danfoss, Schneider Electric. Такие устройства обладают многими функциями, которые программируются пользователем. Это время разгона, время торможения, защита от перегрузок и множество других дополнительных функций.

При всех достоинствах фирменные устройства обладают одним недостатком, - достаточно высокой ценой. Вместе с тем можно создать подобное устройство самостоятельно. Стоимость его при этом получится небольшой.

Устройство плавного пуска на микросхеме КР1182ПМ1

В рассказывалось о специализированной микросхеме КР1182ПМ1 , представляющей фазовый регулятор мощности. Были рассмотрены типовые схемы ее включения, устройства плавного запуска ламп накаливания и просто регуляторы мощности в нагрузке. На основе этой микросхемы возможно создание достаточно простого устройства плавного пуска трехфазного электродвигателя. Схема устройства показана на рисунке 1.

Рисунок 1. Схема устройства плавного пуска двигателя.

Плавный пуск осуществляется при помощи постепенного увеличения напряжения на обмотках двигателя от нулевого значения до номинального. Это достигается за счет увеличения угла открывания тиристорных ключей за время, называемое временем запуска.

Описание схемы

В конструкции используется трехфазный электродвигатель 50 Гц, 380 В. Обмотки двигателя, соединенные «звездой», подключаются к выходным цепям, обозначенным на схеме как L1, L2, L3. Средняя точка «звезды» подключается к сетевой нейтрали (N).

Выходные ключи выполнены на тиристорах включенных встречно - параллельно. В конструкции применены импортные тиристоры типа 40TPS12. При небольшой стоимости они обладают достаточно большим током - до 35 А, а их обратное напряжение 1200 В. Кроме них в ключах присутствуют еще несколько элементов. Их назначение следующее: демпфирующие RC цепочки, включенные параллельно тиристорам, предотвращают ложные включения последних (на схеме это R8C11, R9C12, R10C13), а с помощью варисторов RU1…RU3 поглощаются коммутационные помехи, амплитуда которых превышает 500 В.

В качестве управляющих узлов для выходных ключей используются микросхемы DA1…DA3 типа КР1182ПМ1. Эти микросхемы достаточно подробно были рассмотрены в . Конденсаторы С5…С10 внутри микросхемы формируют пилообразное напряжение, которое синхронизировано сетевым. Сигналы управления тиристорами в микросхеме формируются путем сравнения пилообразного напряжения с напряжением между выводами микросхемы 3 и 6.

Для питания реле К1…К3 в устройстве имеется блок питания, который состоит всего из нескольких элементов. Это трансформатор Т1, выпрямительный мостик VD1, сглаживающий конденсатор С4. На выходе выпрямителя установлен интегральный стабилизатор DA4 типа 7812 обеспечивающий на выходе напряжение 12 В, и защиту от коротких замыканий и перегрузок на выходе.

Описание работы устройства плавного пуска электродвигателей

Сетевое напряжение на схему подается при замыкании силового выключателя Q1. Однако, двигатель еще не запускается. Это происходит потому, что обмотки реле К1…К3 пока обесточены, и их нормально-замкнутые контакты шунтируют выводы 3 и 6 микросхем DA1…DA3 через резисторы R1…R3. Это обстоятельство не дает заряжаться конденсаторам С1…С3, поэтому управляющие импульсы микросхемы не вырабатывают.

Пуск устройства в работу

При замыкании тумблера SA1 напряжение 12 В включает реле К1…К3. Их нормально-замкнутые контакты размыкаются, что обеспечивает возможность зарядки конденсаторов С1…С3 от внутренних генераторов тока. Вместе с увеличением напряжения на этих конденсаторах увеличивается и угол открывания тиристоров. Тем самым достигается плавное увеличение напряжения на обмотках двигателя. Когда конденсаторы зарядятся полностью, угол включения тиристоров достигнет максимальной величины, и частота вращения электродвигателя достигнет номинальной.

Отключение двигателя, плавное торможение

Для выключения двигателя следует разомкнуть выключатель SA1, Это приведет к отключению реле К1…К3. Их нормально - замкнутые контакты замкнутся, что приведет к разряду конденсаторов С1…С3 через резисторы R1…R3. Разряд конденсаторов будет длиться несколько секунд, за это же время произойдет останов двигателя.

При пуске двигателя в нулевом проводе могут протекать значительные токи. Это происходит оттого, что в процессе плавного разгона токи в обмотках двигателя несинусоидальные, но особо бояться этого не стоит: процесс пуска достаточно кратковременный. В установившемся же режиме этот ток будет много меньше (не более десяти процентов тока фазы в номинальном режиме), что обусловлено лишь технологическим разбросом параметров обмоток и «перекосом» фаз. От этих явлений избавиться уже невозможно.

Детали и конструкция

Для сборки устройства необходимы следующие детали:

Трансформатор мощностью не более 15 Вт, с напряжением выходной обмотки 15…17 В.

В качестве реле К1…К3 подойдут любые с напряжением катушки 12 В, имеющие нормально-замкнутый или переключающий контакт, например TRU-12VDC-SB-SL.

Конденсаторы С11…С13 типа К73-17 на рабочее напряжение не менее 600 В.

Устройство выполнено на печатной плате. Собранное устройство следует поместить в пластмассовый корпус подходящих размеров, на лицевой панели которого разместить выключатель SA1 и светодиоды HL1 и HL2.

Подключение двигателя

Подключение выключателя Q1 и двигателя выполняется проводами, сечение которых соответствует мощности последнего. Нулевой провод выполняется тем же проводом, что и фазные. При указанных на схеме номиналах деталей возможно подключение двигателей мощностью до четырех киловатт.

Если предполагается использовать двигатель мощностью не более полутора киловатт, а частота пусков не будет превышать 10…15 в час, то мощность, рассеиваемая на тиристорных ключах незначительна, поэтому радиаторы можно не ставить.

Если же предполагается использовать более мощный двигатель или запуски будут более частыми, потребуется установка тиристоров на радиаторы, изготовленные из алюминиевой полосы. Если же радиатор предполагается использовать общий, то тиристоры следует изолировать от него при помощи слюдяных прокладок. Для улучшения условий охлаждения можно воспользоваться теплопроводящей пастой КПТ - 8.

Проверка и наладка устройства

Перед включением, прежде всего, следует проверить монтаж на соответствие принципиальной схеме. Это основное правило, и отступать от него нельзя. Ведь пренебрежение этой проверкой может привести к куче обугленных деталей, и надолго отбить охоту делать «опыты с электричеством». Найденные ошибки следует устранить, ведь все же эта схема питается от сети, а с нею шутки плохи. И даже после указанной проверки подключать двигатель еще рано.

Сначала следует вместо двигателя подключить три одинаковых лампы накаливания, мощностью 60…100 Вт. При испытаниях следует добиться, чтобы лампы «разжигались» равномерно.

Неравномерность времени включения обусловлена разбросом емкостей конденсаторов С1…С3, которые имеют значительный допуск по емкости. Поэтому лучше перед установкой сразу подобрать их с помощью прибора, хотя бы с точностью процентов до десяти.

Время выключения обусловлено еще сопротивлением резисторов R1…R3. С их помощью можно выровнять время выключения. Эти настройки следует выполнять в том случае, если разброс времени включения - выключения в разных фазах превышает 30 процентов.

Двигатель можно подключать лишь после того, как вышеуказанные проверки прошли нормально, не сказать бы даже на отлично.

Что можно еще добавить в конструкцию

Выше уже было сказано, что такие устройства в настоящее время выпускаются разными фирмами. Конечно, все функции фирменных устройств в подобном самодельном повторить невозможно, но одну все-таки, скопировать, наверно, удастся.

Речь идет о так называемом . Назначение его следующее: после того, как двигатель достиг номинальных оборотов, контактор просто перемыкает тиристорные ключи своими контактами. Ток идет через них в обход тиристоров. Такую конструкцию часто называют байпасом (от английского bypass - обход). Для такого усовершенствования придется ввести дополнительные элементы в блок управления.

Борис Аладышкин

Устройство плавного пуска (УПП) — это устройство механического, электротехнического или электромеханического типа, которое необходимо для электродвигателей. Оно позволяет запустить либо остановить мотор без перегрузки (с большим моментом страгивания). Также УПП влияет на высоту пускового тока . Регулировка крутящего момента двигателя — основная особенность механизма. В данном случае оказывается меньшая нагрузка на мотор. Всё это позволяет уменьшить износ привода. Стандартный двигатель при пуске за
очень короткое время достигает высокого крутящего момента. Также изменения происходят по параметру пускового тока. Нагрузку на электрическую сеть можно оценить, подключив мощный двигатель с включенной лампой. При резком старте можно наблюдать повышение нагрузки в цепи, и лампа в этот момент не будет ярко светить. Для промышленного предприятия такие проблемы недопустимы. Стоит учитывать номинальное напряжение устройств. Единственным правильным решением считается контроль уровня пускового тока. Это достигается за счёт плавного увеличения напряжения на обмотках электродвигателя.

При подключенном устройстве плавного пуска обмотка не перегревается, и нет проблем с износом механической части привода. Также серьезной проблемой считается повреждение задвижек. При резком пуске или остановке данные элементы испытывают большие нагрузки за счёт гидравлических ударов. Сразу стоит сказать, что многое зависит от настройки УПП.

По конструкции различают:

  1. Механические устройства. (делаются с тумблером, который переключается вручную).
  2. Электронные УПП (делаются с контактором, который включает устройство автоматически при запуске мотора).
  3. Электромеханические модели (делаются с тумблером включения и контактором).

По принципу работы разделяет:

  1. Однофазные модели.
  2. Двухфазные устройства.
  3. Трехфазный тип.

Механические устройства работают в цепи переменного тока, и подходят для двигателей разной мощности . Устройства хорошо справляются с защитой привода от перегрузки, а также перегрева при значительном крутящем моменте. При правильной настройке УПП снижается риск износа в контактах вследствие влияния электромагнитных помех.

Электромеханические модели функционируют от полупроводниковой платы , неотъемлемой частью которой является байпасный контактор . В момент, когда мотор достигает своей номинальной мощности, представленный элемент напрямую может влиять на величину напряжения.

Электронные УПП являются наиболее распространенным. Современные модели способны быстро ограничивать ток. Без какого-либо перекоса по фазам УПП влияют на силу магнитного поля. Устройства могут функционировать с функцией обратной связи, а также без неё . Первый тип считается усовершенствованным за счёт возможности регулировки фазового сдвига. УПП с функцией обратной связи напрямую влияют на уровень тока в обмотках двигателя. Модели без этой опции работают в двухфазной и трехфазной цепи. В данном случае изменения токовые нагрузки происходит согласно заранее произведенным настройкам.

Примером однофазного УПП является модель SOFT-START AST2-30A ,
номинальная мощность которой составляет 15 кВт. Устройство имеет надежную систему защиты, и предельное напряжение равняется 480 Вольт. Рабочая частота заявлено на уровне 60 Гц. Устройство является довольно компактным и весит лишь 1,5 кг.

Примером двухфазного устройства плавного пуска электродвигателя является модель SOFT-START AST2-85A . Тут предусмотрена защита от пропадания входной фазы. Если говорить про показатели, то номинальный ток равняется 85 А, и устройство работает в сети с напряжением 480 Вольт. Номинальная мощность — 45 кВт, а частота не превышает 60 Гц. Наличие защиты от потери фазы двигателем — очередное преимущество. Если говорить про физические параметры, то длина оборудования равняется 330 мм при ширине 150 мм, а вес устройства — 55 кг.

Устройство

Стандартный УПП включает в себя следующие узлы:

  1. Тиристоры для регулировки напряжения.
  2. Блок печатных плат, необходимых для управления тиристорами.
  3. Радиаторы, обеспечивающие рассеивание тепла.
  4. Трансформатор тока для измерения основных показателей.
  5. Корпус устройства.

Выбор качественной модели

При подборе УПП стоит учитывать мощность двигателя , и обращать внимание на такой параметр, как номинальный ток . Сразу стоит сказать, что лидерами на рынке устройств плавного пуска считаются компаний 220 вольт и Сименс. В первую очередь рекомендуется рассмотреть модели с номинальным током от 3 до 29 ампер. Такие устройства подходят для двигателей мощностью от 3 кВт. У стандартной модели напряжение цепи управления (максимальное) составляет 415 Вольт. Специалисты рекомендуют обращать внимание на такие дополнительные параметры:

  1. Рассеиваемая мощность.
  2. Частота источника питания (предельная).
  3. Габариты.
  4. Минимальная рабочая температура.
  5. Ток дискретного выхода.
  6. Продолжительность работы.
  7. Отклонение частоты.

Модели низкой ценовой категории не подходят для конвейеров и мощных ленточных транспортеров. Чаще всего такие устройства выбираются для насосов и вентиляторов. Для компрессоров стоит подбирать устройство плавного пуска двигателя с надежной системой защиты. В этом плане хорошо показали себя модели компании 220 вольт. Если рассматривать модификации на 25 Ампер, то она хорошо подойдет для двигателя на 10 кВт.

Стандартное устройство может свободно работать в сети трехфазного переменного тока . Частота питающей сети стартует от 50 Гц. Важно уточнить информацию по току дискретного выхода, и не забывать про минимальную рабочую температуру. Если подбирать устройство Сименс, можно найти интересные варианты на 82 и 130 ампер. У моделей частота питающей сети составляет 50-60 Гц. Ток дискретного выхода при этом не превышает 2 ампер, а напряжение (максимальное) находится на уровне 40 В. Большинство моделей могут применяться в сети трехфазного переменного тока. Предельное напряжение источников питания составляет 300 и более вольт. Также стоит обратить внимание на конструктивные особенности УПП. У многих современных моделей используются внутренние реле байпаса. Лучше не рассматривать устройства, при установке которых требуется гальваническая развязка.

Особенности подключения оборудования

При проведении монтажных работ следует учесть, что поднимать УПП за соединительные шины строго настрого запрещается. Стандартная модель, как правило, устанавливается при помощи болтов М6 , а также дополнительных фиксаторов . Существуют модификации, для которых подбирается защитный корпус. В инструкции к товару всегда можно ознакомиться с физическими размерами оборудования.

Также в документации приводятся данные по фиксации защитного корпуса. Стоит учесть, что он не должен быть слишком мал, поскольку это приводит к перегреву тиристора. Выбор места установки — еще один важный аспект. Снизу и сверху оборудования должно быть достаточно места для циркуляции воздуха. Также следует исключить случаи попадания на устройство какой-либо жидкости либо пыли. Важно отметить, что полупроводники не способны заменить воздушную изоляцию. Таким образом, при монтаже применяется линейный контактор.

Все работы проводятся при отключенном напряжении. Модификации двухфазного типа подключаются последовательно по схеме. Отдельно стоит рассмотреть УПП с соединительным модулем. При монтаже таких устройств с кабелей снимается изоляция. На первом этапе они подсоединяется к клеммам. Далее кабели подводятся к электродвигателю.

Принцип работы устройств плавного пуска

Есть большое количество величин, влияющих на работу асинхронного электропривода. Для изменения переходных процессов используется коммутационная аппаратура . За счёт неё достигается изменение уровня сопротивления и затухание магнитного поля. У
некоторых моделей для этого предусмотрены специальные муфты либо блокираторы. Регулировка пропускаемого тока происходит благодаря полупроводниковым вентилям, которые управляются. Они считаются эффективным коммутирующим элементом. Благодаря тиристорам можно первоначально задавать необходимые условия работы. Так, можно менять показатели питающей системы напряжения.

Поскольку в последнее время очень широко распространилось применение асинхронного двигателя , в связи с его простотой, надежностью и небольшой ценой. Это стало причиной его широкого применения в промышленности. С целью улучшения его характеристик и продления срока работы, имеется большое число различных приспособлений, способных к регулировке, старту, либо защите движка. Вот об одном из них я и расскажу в этой статье.

Этим устройством является устройство плавного пуска электродвигателя (сокращенно УПП), иначе называемое софт-стартером, несмотря на то, что это название можно использовать к любым приспособлениям, способным выполнить плавный старт движка.

УПП асинхронных двигателей современного типа сменяет собой все прежние методы, вроде старта способом «переключение звезда-треугольник», либо пуска при помощи реостата. Необходимо иметь ввиду тот факт, что способ этот не дешев, следовательно, использование его должно быть оправдано. Само собой разумеется, что стоимость устройства сильно зависит от требуемой мощности, стартового функционала и защитных свойств и колеблется от 2 до 10 тысяч рублей, а иногда и более.

Принцип действия

Во время старта мотора, появляется немалый пусковой момент (вследствие необходимости преодоления нагрузочного момента на валу).

Для создания этого момента, двигатели забирают из сети большое количество энергии, что является одной из пусковых проблем – просадкой напряжения.

Этот фактор может плохо повлиять на других потребителей энергии, находящихся в этой сети. Еще одним неприятным фактором является возможность повреждение механических частей привода вследствие резкого пускового рывка.

Другую проблему при запуске создают немалые стартовые токи. Такие токи, при протекании по обмоткам мотора, выделяют очень много тепла, создавая опасность повреждения изоляции обмоток и выхода из строя двигателя в результате виткового замыкания.

Вот для избавления от всех подобных проявлений отрицательного характера во время старта двигателя и применяют УПП, позволяющее уменьшить токи старта, в результате чего значительно уменьшить просадки напряжения и, как следствие, нагрев обмоток.

Снижая стартовые токи, мы снижаем пусковой момент, в результате чего происходит смягчение ударов во время пуска и, как следствие, сохранение механических деталей привода. Весьма немалым плюсом УПП следует считать то, что при запуске нет рывков, а ускорение плавное.

По внешнему виду такое устройство представляет из себя прямоугольной формы модуль со средними размерами, имеющий контакты, к которым подключают мотор и цепи управления. Некоторые из таких устройств имеют ЖК-экран, индикаторы и кнопки, которые позволяют задавать разные пусковые режимы, выполнять съем показаний, ограничение тока и т.д. Кроме того, устройства оснащаются сетевым разъемом, при помощи которого выполняют его программирование и обмен данными.

Хотя эти устройства и именуются устройствами плавного пуска электродвигателя, но позволяют они выполнять не только старт, но и остановку движка. Помимо этого, в них имеется всевозможный защитный функционал, такой как, например, защита от КЗ, тепловая защита, контроль пропадания фаз, превышения токов пуска и изменения питающего напряжения. Помимо этого, в устройствах имеется память, в которую записываются возникающие ошибки. Следовательно, при помощи сетевого разъема, можно произвести их считывание и расшифровку.

Реализация плавного старта двигателей с использованием этих устройств происходит посредством медленного подъема напряжения (при этом мотор плавно разгоняется) и уменьшения токов запуска. Параметры, которые при этом подлежат регулировке, это, как правило, первичное напряжение, разгонное время и время остановки. Делать первичное напряжение слишком маленьким не выгодно, т.к. при этом значительно снижается момент пуска, по этой причине он устанавливается в пределах 0.3-0.6 от номинала.
При старте напряжение быстро поднимается до выставленного заранее напряжения старта, после чего, в течение установленного разгонного времени, медленно увеличивается до номинала. Движок в это время плавно, но быстро разгоняется до необходимой скорости.

Сейчас такие устройства изготавливают многие предприятия (в основном зарубежные). Функций у них много и их можно программировать. Однако, при всем этом, у них есть один большой минус – достаточно большая стоимость. Но есть возможность создания подобного устройства и своими руками, тогда оно будет стоить значительно дешевле.

Устройство плавного пуска электродвигателя своими руками

Приведу одну из возможных схем подобного устройства. Основой для построения такого устройства может стать регулятор мощности фазового типа, выполненный в виде микросхемы КР1182ПМ1. В этой схеме их установлено три (на каждую фазу свой). Схема представлена на рисунке ниже.

Данная схема предназначена для работы с двигателем 380в*50гц. Обмотки мотора соединены в «звезду» и подключены на выходные цепи схемы (они имеют обозначения L11, L2, L3). Общая точка обмоток движка цепляется на вывод сетевой нейтрали (N). Цепи выхода выполнены на встречно-параллельных парах тиристоров импортного производства, имеющих при малой цене достаточно высокие показатели.

Питание на схему приходит после того, как замкнется главный выключатель g1. Но, движок еще не запускается. Причина этому – обесточенные обмотки релюх к1-к3, вследствие чего, выводы 3 и 6 микросхем оказываются зашунтированными их нормально-закрытыми контактами (через сопротивления r1-r3). В результате этого, емкости с1-с3 не заряжаются, а микросхемы не вырабатывают импульсы управления.

Запуск схемы выполняется путем замыкания тумблера sa1. Это приводит к подаче напряжения 12 вольт на обмотки реле, что, в свою очередь, дает возможность заряда конденсаторов и, как следствие, увеличения угла открывания тиристоров. С помощью этого достигается плавный подъем напряжения обмоток двигателя. При достижении полного заряда конденсаторов, тиристоры откроются на наибольший угол, чем будет достигнута номинальная частота вращения движка.

Чтобы отключить двигатель, достаточно разомкнуть контакты sa1, что заставит отключиться релюхи и процесс пойдет в обратном направлении, обеспечив торможение двигателя.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на , буду рад, если вы найдете на моем сайте еще что-нибудь полезное. Всего доброго.

Распечатать

Электропривод

Устройства плавного пуска: правильный выбор

Ранее мы обсуждали характеристики преобразователей частоты , а сегодня настал черед устройств плавного пуска (мягких пускателей, плавных пускателей – единый термин пока не устоялся, и в этой статье мы будем использовать термин "устройство плавного пуска" – УПП).

Иногда из уст продавцов приходится слышать мнение о том, что УПП выбрать просто, это, мол, не преобразователь частоты, здесь надо только пуск организовать. Это не так. Устройство плавного пуска выбирать сложнее. Попробуем разобраться, в чем эта сложность состоит.

Назначение УПП

Как следует из названия, задача прибора – организовать плавный пуск асинхронного двигателя переменного тока. Дело в том, что при прямом пуске (то есть при подключении двигателя к питающей сети при помощи обычного пускателя) двигатель потребляет пусковой ток, превышающий номинальный в 5-7 раз, и развивает пусковой момент, существенно превышающий номинальный. Все это приводит к двум группам проблем:

1) Пуск слишком быстрый, и это приводит к различным неприятностям – гидравлическим ударам, рывкам в механизме, ударному выбору люфтов, обрыву транспортерных лент и т.д.

2) Пуск тяжелый, и завершить его не удается. Здесь сначала нужно определиться с термином "тяжелый пуск" и возможностями его "облегчения" при помощи УПП. К "тяжелому пуску" обычно относят три разновидности пуска:

а) пуск, "тяжелый" для питающей сети – от сети требуется ток, который она может обеспечить с трудом или не может вообще. Характерные признаки: при пуске отключаются автоматы на входе системы, в процессе пуска гаснут лампочки и отключаются некоторые реле и контакторы, останавливается питающий генератор. Скорее всего, УПП тут действительно поправит дело. Однако следует помнить, что в лучшем случае пусковой ток удастся снизить до 250% от номинального тока двигателя, и если этого недостаточно, то решение одно – необходимо использовать преобразователь частоты .
б) Двигатель не может запустить механизм при прямом пуске – не крутится вообще или "зависает" на определенной скорости и остается на ней до срабатывания защиты. Увы, УПП ему не поможет – двигателю не хватает момента на валу. Возможно, с задачей справится преобразователь частоты, но этот случай требует исследования.
в) Двигатель уверенно разгоняет механизм, но не успевает дойти до номинальной частоты – срабатывает автомат на входе. Такое часто бывает на тяжелых вентиляторах с достаточно высокой частотой вращения. Устройство плавного пуска здесь, скорее всего, поможет, но риск неудачи сохраняется. Чем ближе механизм к номинальной скорости в момент срабатывания защиты, тем больше вероятность успеха.

Организация пуска при помощи УПП

Принцип работы устройства плавного пуска заключается в том, что напряжение, подаваемое от сети через УПП на нагрузку, ограничивается при помощи специальных силовых ключей – симисторов (или встречно – параллельно включенных тиристоров) – см. рис. 1. В результате напряжение на нагрузке можно регулировать.

Немного теории: процесс пуска – это процесс преобразования электрической энергии источника питания в кинетическую энергию работающего на номинальной скорости механизма. Очень упрощенно этот процесс можно описать так: сопротивление двигателя R в процессе разгона увеличивается от очень маленького при остановленном двигателе до достаточно большого на номинальной скорости, поэтому ток, который по закону Ома равен:

I = U / R (1)

оказывается очень большим, а передача энергии

Е = P х t = I х U х t (2)

очень быстрой. Если между сетью и двигателем установить УПП, то формула (1) действует на его выходе, а формула (2) – на входе. Понятно, что ток в обеих формулах одинаковый. УПП ограничивает напряжение на двигателе, плавно повышая его по мере разгона вслед за ростом сопротивления, ограничивая, таким образом, потребляемый ток. Поэтому по формуле (2) при постоянстве необходимой энергии Е и напряжении сети U чем меньше ток I, тем больше время пуска t. Отсюда видно, что при снижении напряжения будут решаться как проблемы, связанные со слишком быстрым пуском, так и проблемы, связанные со слишком большим током, потребляемым от сети.

Однако в наших выкладках не учитывалась нагрузка, для разгона которой нужен дополнительный момент, и соответственно дополнительный ток, поэтому уменьшать ток слишком сильно нельзя. Если нагрузка велика, то момента на валу двигателя может не хватить даже при прямом пуске, не говоря уже о пуске при пониженном напряжении – это вариант тяжелого пуска "б", описанный выше. Если же при снижении тока момент оказывается достаточным для разгона, но время в формуле (2) растет, то может сработать автомат – с его точки зрения время протекания тока, существенно превышающего номинальный, недопустимо велико (вариант тяжелого пуска "в").

Основные характеристики УПП. Возможность контроля тока . По существу это способность УПП регулировать напряжение так, чтобы ток изменялся по заданной характеристике. Эта функция обычно называется пуском в функции тока. Простейшие УПП, не имеющие такой возможности, просто регулируют напряжение в функции времени – т.е. напряжение на двигателе плавно возрастает от начального до номинального за заданное время. Во многих случаях этого достаточно, особенно при решении проблем группы 1. Но если основная причина установки УПП – ограничение тока, то без его точного регулирования не обойтись. Эта функция особенно важна тогда, когда из-за ограниченной мощности сети (маленький трансформатор, слабый генератор, тонкий кабель и т.п.) превышение предельно допустимого тока чревато аварией. Кроме того, УПП с контролем тока способны реализовать его плавное нарастание в начале процесса пуска, что особенно важно при работе от генераторов, которые очень чувствительны к резким броскам нагрузки.

Необходимость шунтирования.

По окончании процесса пуска и достижении номинального напряжения на двигателе УПП желательно вывести из силовой цепи. Для этого применяется шунтирующий контактор, соединяющий вход и выход УПП пофазно (см. рис. 2).

По команде от УПП этот контактор замыкается, и ток течет в обход прибора, что позволяет его силовым элементам полностью остыть. Однако, даже при отсутствии шунтирующей цепи, когда во все время работы двигателя через симисторы течет номинальный силовой ток, их нагрев по сравнению с режимом пуска оказывается небольшим, поэтому многие УПП допускают работу без шунтирования. Платой за такую возможность оказывается немного меньший номинальный ток и существенное увеличение веса и габаритов за счет радиатора, необходимого для отвода тепла от силовых ключей. Некоторые УПП строятся по обратному принципу – в них шунтирующий контактор уже встроен, и на работу без шунтирования они не рассчитаны, поэтому из-за уменьшения охлаждающих радиаторов их размеры оказываются минимальными. Это положительно сказывается и на цене, и на получающейся схеме подключения, но их время работы в пусковом режиме оказывается меньше по сравнению с другими приборами.

Количество регулируемых фаз.

По этому параметру УПП делятся на двухфазные и трехфазные. В двухфазных, как это следует из названия, ключи установлены только в двух фазах, третья же подключается к двигателю напрямую. Плюсы – снижение нагрева, уменьшение габаритов и цены.

Минусы – нелинейное и несимметричное по фазам потребление тока, которое хотя и частично компенсируется специальными алгоритмами управления, все же отрицательно влияет на сеть и двигатель. Впрочем, при нечастых пусках этими недостатками можно пренебречь.

Цифровое управление. Система управления УПП может быть цифровой и аналоговой. Цифровые УПП обычно реализуются на микропроцессоре и позволяют очень гибко управлять процессом работы прибора и реализовывать множество дополнительных функций и защит, а также обеспечивать удобную индикацию и связь с управляющими системами верхнего уровня. В управлении аналоговых УПП используются операционные элементы, поэтому их функциональная насыщенность ограничена, настройка выполняется потенциометрами и переключателями, а связь с внешними системами управления обычно осуществляется при помощи дополнительных устройств.

Дополнительные функции

Защита. Кроме своей основной функции – организации плавного пуска – УПП содержат в себе комплекс защит механизма и двигателя. Как правило, в этот комплекс входит электронная защита от перегрузки и неисправностей силовой цепи. В дополнительный набор могут входить защиты от превышения времени пуска, от перекоса фаз, изменения чередования фаз, слишком маленького тока (защита от кавитации в насосах), от перегрева радиаторов УПП, от снижения частоты сети и т.д. Ко многим моделям возможно подключение термистора или термореле, встроенного в двигатель. Однако следует помнить, что УПП не может защитить ни себя, ни сеть от короткого замыкания в цепи нагрузки. Конечно, сеть будет защищена вводным автоматом, но УПП при коротком замыкании неизбежно выйдет из строя. Некоторым утешением может служить только то, что короткое замыкание при правильном монтаже не возникает мгновенно, и в процессе снижения сопротивления нагрузки УПП обязательно отключится, только не стоит вновь включать его, не установив причину отключения.

Пониженная скорость. Некоторые устройства плавного пуска способны реализовать так называемое псевдочастотное регулирование –перевод двигателя на пониженную скорость. Этих пониженных скоростей может быть несколько, но они всегда строго определены и не поддаются коррекции пользователем.

Кроме того, работа на этих скоростях сильно ограничена по времени. Как правило, эти режимы используются в процессе отладки или при необходимости точной установки механизма в нужное положение перед началом работы или по ее окончании.

Торможение . Довольно много моделей способны подать на обмотку двигателя постоянный ток, что приводит к интенсивному торможению привода. Эта функция обычно нужна в системах с активной нагрузкой – подъемники, наклонные транспортеры, т.е. системы, которые могуг двигаться сами собой при отсутствии тормоза. Иногда эта функция нужна для предпусковой остановки вентилятора, вращающегося в обратную сторону из-за тяги или действия другого вентилятора.

Толчковый пуск. Используется в механизмах, имеющих высокий момент трогания. Заключается функция в том, что в самом начале пуска на двигатель кратковременно (доли секунды) подается полное напряжение сети, и происходит срыв механизма с места, после чего дальнейший разгон происходит в обычном режиме.

Экономия энергии в насосно-вентиляторной нагрузке. Поскольку УПП представляет собой регулятор напряжения, то при малой нагрузке можно снизить напряжение питания без ущерба для работы механизма.

Экономию энергии это дает, но не следует забывать, что тиристоры в режиме ограничения напряжения являются нелинейной нагрузкой для сети со всеми вытекающими отсюда последствиями.

Есть и другие возможности, которые производители закладывают в свои изделия, но для их перечисления объема одной статьи недостаточно.

Методика выбора

Теперь вернемся к тому, с чего мы начинали – к выбору конкретного прибора.

Многие советы, данные для выбора преобразователя частоты, действуют и здесь: сначала следует отобрать серии, отвечающие техническим требованиям по функциональности, затем выбрать из них те, которые охватывают диапазон мощностей для конкретного проекта, и из оставшихся выбрать нужную серию в соответствии с другими критериями – производитель, поставщик, сервис, цена, габариты, и т.д.

Если нужно выбрать УПП для насоса или вентилятора, запуск которых происходит не чаще двух-трех раз в час, то можно просто выбрать модель, номинальный ток которой равен или больше номинального тока запускаемого двигателя. Этот случай охватывает около 80% применений, и не требует консультаций со специалистом. Если же частота пусков в час превышает 10, то нужно учесть и необходимое ограничение тока, и требуемое затягивание пуска по времени. В этом случае очень желательна помощь поставщика, у которого, как правило, имеется программа выбора нужной модели или хотя бы расчетный алгоритм. Данные, которые понадобятся для расчета: номинальный ток двигателя, количество пусков в час, необходимая длительность пуска, необходимое ограничение тока, необходимая длительность останова, окружающая температура, предполагаемое шунтирование.

Если же двигатель запускается свыше 30 раз в час, то стоит рассмотреть в качестве альтернативы вариант использования преобразователя частоты, поскольку даже выбор более мощной модели УПП может не решить проблему. А цена его уже будет сравнима с ценой преобразователя при существенно меньшей функциональности и серьезному влиянию на качество сети.

Подключение

Кроме очевидного подключения прибора к сети и двигателю, необходимо определиться с шунтированием.

Несмотря на то, что шунтирующий контактор будет коммутировать номинальный, а не пусковой ток двигателя, желательно все-таки использовать модель, рассчитанную на прямой пуск – хотя бы для реализации аварийных режимов работы. При подключении следует обратить особое внимание на фазировку – если ошибочно соединить, например, фазу А на входе УПП с другой фазой на выходе, то при первом же включении шунтирующего контактора произойдет короткое замыкание, и прибор будет выведен из строя.

Некоторые УПП допускают так называемое шестипроводное подключение, схема которого показана на рис. 3. Такое подключение требует большего количества кабелей, но позволяет использовать устройство плавного пуска с двигателем, мощность которого намного превышает мощность самого УПП.

При установке УПП следует иметь в виду еще одно его свойство, часто приводящее к недоразумениям (см. тяжелый пуск "в"). При расчете вводного автомата для двигателя, подключающегося к сети напрямую, учитывается номинальный ток двигателя, протекающи й длительное время, и пусковой, протекающий лишь несколько секунд. При использовании же УПП пусковой ток существенно меньше, но протекает он намного дольше – до минуты и более. Автомат не может этого “понять” и считает, что запуск давно завершен, а протекающий ток, превышающий номинальный в разы, является следствием аварийной ситуации, и отключает систему. Во избежание этого следует либо установить специальный автомат с возможностью установки дополнительного режима для процесса плавного пуска, либо выбрать автомат с номинальным током, соответствующим пусковому току при использовании УПП. Во втором случае этот автомат не сможет защитить двигатель от перегрузок, но эту функцию выполняет сам УПП, так что защита двигателя не пострадает.

Подведем итоги. Если механизм, пуск которого нужно сделать более плавным, вписывается во все перечисленные в этой статье ограничения, а возможности, обеспечиваемые доступными моделями УПП, вас устраивают, то ваш выбор – устройство плавного пуска. Экономия средств по сравнению с применением преобразователя частоты (заменой питающего трансформатора, увеличением мощности генератора, заменой кабеля на более толстый – выберите ваш случай) будет ощутимой. Если же УПП по каким-то причинам не подходит – еще раз обратите внимание на преобразователи частоты , которые хотя и дороже, но намного функциональнее.

Руслан Хусаинов, к.т.н., технический директор ЗАО "Сантерно" (Москва)