Обшивка самолёта. Обшивка самолета Органы управления и сигнализации

- («Воздухолетательный снаряд») Самолёт Можайского, рисунок из книги В. Д. Спицина «Воздухоплаван … Википедия

самолёт - летательный аппарат тяжелее воздуха с крылом, на котором при движении образуется аэродинамическая подъёмная сила, и силовой установкой, создающей тягу для полёта в атмосфере. Основные части самолёта: крыло (одно или два), фюзеляж, оперение, шасси … Энциклопедия техники

Самолёт Болдырева - Фотография Самолёта Болдырева Тип высокоплан Производитель МАИ Главный конструктор А. И. Болдырев … Википедия

Обшивка - оболочка, образующая внешнюю поверхность летательного аппарата. В современных летательных аппаратах используется жёсткая «работающая» О., воспринимающая одновременно внешние аэродинамические нагрузки, нагрузки в виде изгибающих и крутящих… … Энциклопедия техники

ОБШИВКА - (1) внешняя оболочка из твёрдого материала, покрывающая самолёт, вертолёт, корабль и др. для придания им обтекаемых форм, защиты различных выступающих конструкций, обеспечения наименьшего сопротивления воздуха или воды движению технических… … Большая политехническая энциклопедия

Самолёт-заправщик - Дозаправка в воздухе операция передачи топлива с одного летательного аппарата на другой во время полета. Содержание 1 История 2 Значение и применение 3 Системы дозаправки в воздухе … Википедия

обшивка Энциклопедия «Авиация»

обшивка - Рис. 1. Нагрузки, действующие на обшивку крыла. обшивка — оболочка, образующая внешнюю поверхность летательного аппарата. В современных летательных аппаратах используется жёсткая «работающая» О., воспринимающая одновременно внешние… … Энциклопедия «Авиация»

обшивка - Рис. 1. Нагрузки, действующие на обшивку крыла. обшивка — оболочка, образующая внешнюю поверхность летательного аппарата. В современных летательных аппаратах используется жёсткая «работающая» О., воспринимающая одновременно внешние… … Энциклопедия «Авиация»

обшивка - Рис. 1. Нагрузки, действующие на обшивку крыла. обшивка — оболочка, образующая внешнюю поверхность летательного аппарата. В современных летательных аппаратах используется жёсткая «работающая» О., воспринимающая одновременно внешние… … Энциклопедия «Авиация»

обшивка - и; мн. род. вок, дат. вкам; ж. 1. к Обшить. 2. То, чем обшито, отделано по краям что л.; кайма, оторочка. Рукава с красными обшивками. Пальто с меховой обшивкой. Атласная о. подола. 3. То, чем покрыта, обита, обшита поверхность чего л. (доски,… … Энциклопедический словарь

Монокок

Моноко́к

(фр. monocoque) тип корпуса, конструкции самолета, характеризующийся жесткой обшивкой, подкрепленной поперечными и продольными наборами - каркасом.

Новый словарь иностранных слов.- by EdwART, , 2009 .

Монокок

[фр. monocoque ] – одна из основных частей конструкции самолёта – хорошо обтекаемая пустотелая балка с жёсткой деревянной или металлический обшивкой, к которой крепятся крылья, хвостовое оперение, двигатель, шасси и др.

Большой словарь иностранных слов.- Издательство «ИДДК» , 2007 .

Монокок

а, м. (фр. monocoque греч. mоnоs один + фр. coque корпус).
ав. Тип корпуса самолета, характеризующийся жесткой обшивкой с использованием поперечных и продольных крепежных элементов, образующих каркас.

Толковый словарь иностранных слов Л. П. Крысина.- М: Русский язык , 1998 .


Синонимы :

Смотреть что такое "монокок" в других словарях:

    монокок - а, м. monocoque adj. Монокок. Тип самолет, который представляют собой монолитную (цельную), составляющую как бы одно целое скорлупу, склеенную из полос фанеры в виде сигары. 1925. Вейгелин Сл. авиа. Что такое фюзеляж типа монокок? Фюзеляж (корпус … Исторический словарь галлицизмов русского языка

    - (английский, французкий monocoque, от греческого monos один, единый и французский coque, буквально скорлупа, оболочка) конструкция фюзеляжа или его хвостовой балки, мотогондолы и т. п. круглого, овального или другого сечения, состоящая из толстой … Энциклопедия техники

    Сущ., кол во синонимов: 1 балка (55) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов

    LFG Roland C.II, Германия, 1916 один из первых самолётов с фюзеляжем монокок в чистом виде … Википедия

    монокок - монок ок, а (авиа) … Русский орфографический словарь

    монокок - (2 м); мн. моноко/ки, Р. моноко/ков … Орфографический словарь русского языка

Применяемые материалы

Самолетные ткани предназначены для обтягивания крыльев, фюзеляжей и поверхностей управления и после нанесения покрытия служат их обшивкой. Наиболее прочными являются хлопчатобумажная ткань АСТ-100 или льняная ткань АЛВК.

Ткань АМ-93, хлопчатобумажная из мерсеризованной пряжи обладает средней прочностью.

Ткань АМ-100 и льняная АЛЛ обладают наиболее легким весом.

В каждом отдельном случае необходимо следить за тем, чтобы марка применяемой ткани соответствовала указанной в чертеже, утвержденном на выпускаемое изделие.

Ткани хлопчатобумажные - бязь и миткаль - применяются для покрытия металлических поверхностей лобовых обтекателей, задних кромок, торцов крыла и других поверхностей, соприкасающихся с полотняной обшивкой.

Для крепления обшивки применяются различные хлопчатобумажные ленты, которые имеют следующее назначение:

  • лента миткалевая тканевая или нарезанная из миткаля для обматывания нервюр (обмоточная лента) и других, чтобы предохранить полотняную обшивку или нити, крепящие обшивку от соприкосновения с металлическими частями, имеющими острые углы.
  • киперная лента для обматывания полос нервюр (обмоточная лента) для крепления полотняной обшивки и для усиления обшивки (как усилительная лента) по месту ее крепления, при сквозной прошивке применяется полульняная лента.
  • двубортная лента для крепления обшивки к полкам нервюр, ленту сшивают с тканью обшивки машинным швом и в последующем пришивают вручную за борта к полке нервюры.
  • поверхностные ленты: зубчатая марки ЛАП3 (СМТУ-298) и с прямыми краями марки ЛАП (СМТУ-293) для наклеивания поверх машинных швов, мест крепления обшивки

Можно применять также зубчатую поверхностную ленту, изготавливаемую из отходов ткани АМ-100.

Для сшивания и крепления самолетных тканей применяются нитки, имеющие следующее назначение:

  • нитки № 30, 20, 10 для машинного сшивания полотнищ самолетных тканей
  • нитки № 1 для сшивания ткани с укрепительной двубортной лентой при креплении обшивки машинным швом.
  • нитки торговых номеров 0 и 00 для ручного сшивания по передней и задней кромкам крыла полотнищ обшивки, а также при обтягивании миткалем или бязью поверхностей обтекателей.
  • нитки льняные вощеные НАР для крепления полотняной обшивки крыльев, фюзеляжей и рулей (в 8 ниток) и для крепления обшивки элеронов и обшивки у лючков (в 6 ниток)

Для подващивания швейных ниток при ручном шитье применяется натуральный пчелиный воск.

Раскраивание тканей и сшивание полотнищ

Перед раскладыванием ткани на раскройном столе проверить чистоту стола, затем для тканей марок АМ-100, АМ-93 и АСТ-100 определить лицевую сторону, т. е. сторону с более гладкой поверхностью (меньшим ворсом), и разложить ткань на закройном столе так, чтобы при обтягивании лицевая сторона оказалась с внешней стороны. Ткань для раскроя накладывать в несколько слоев.

На верхнем слое ткани произвести разметку по установленным шаблонам, которые располагать на поверхности раскраиваемой ткани в соответствии с технологическими картами раскроя, свода к минимуму отходы ткани. Затем разрезать ткань точно по намеченным контурам.

Перед тем, как сшивать раскроенные полотнища на швейной машине, необходимо проверить правильность натяжения ниток, количество стежков на сантиметр и соответствие номера заправленных ниток марке сшиваемой ткани.

При сшивании самолетных тканей трехстрочным машинным швом применять следующие нитки: для хлопчатобумажной ткани АМ-100 и льняной АЛЛ - №30, для хлопчатобумажной ткани АМ-93 - №20, для хлопчатобумажной ткани АСТ-100 и льняной АЛВК - №10.

Для всех указанных марок самолетных тканей должно быть 40 - 42 стежка на каждые 10 см строчки.

Сшивать на швейной машине отдельные полотнища из самолетных тканей всех марок швом внахлестку с внутренней строчкой (рис 1)

Рис 1 Схема шва внахлестку с внутренней строчкой и подогнутой кромкой
а - сшивка полотнищ первой строчкой, б - вид готового шва, 1 - второе полотнище, 2 - строчки шва

Порядок сшивания этим швом следующий:

  • наложить одно полотнище на другое, так, чтобы кромки совпадали (рис 1 а), сшиваемые полотнища из тканей имеющих лицевую сторону накладывать одно на другое лицевыми сторонами.
  • сшивать полотнища одной строчкой на расстоянии 20 мм от края, строчка должна быть ровной, без зигзагов
  • Верхнее полотнище отогнуть так, чтобы оно закрыло верхнюю строчку, и слегка натягивая, разгладить рукой отогнутую ткань по месту строчки
  • окончательно сшивать полотнища двумя строчками, на расстоянии 6 мм друг от друга (рис 2). Следить за тем, чтобы верхнее полотнище было правильно отогнуто, и строчки шва располагались параллельно друг другу

Прошивая первую наружную строчку, отогнутое полотнище слегка натягивать, чтобы отгибаемая ткань прижималась к ниткам внутренней строчки (этим избегается образование ребра из свободной складки ткани). Правильное и неправильное отгибание ткани после сшивания первой строчкой показано на Рис 2


Рис 2 Схема выполнения шва внахлестку с внутренней строчкой и подогнутой кромкой
а - правильно, б - неправильно

Если ткань имеет совершенно прямую, ровно вытканную и достаточно прочную кромку, можно сшивать полотнища швом внахлестку (рис 3) Порядок сшивания при этом следующий:


Рис 3 Шов внахлест

  • сшиваемые края наложить внахлест (рис 3), так чтобы они перекрывали друг друга на 20 мм. Полотнища тканей, имеющих лицевую сторону накладывать одно на другое лицевой поверхностью к внешней стороне
  • прошить сначала одну (первую) строчку, которая должна отстоять от кромки верхнего полотнища по всей сшиваемой длине на расстояние не более 1 мм, прошивать первую строчку очень тщательно, без зигзагов
  • окончательно сшить полотнища еще двумя строчками, располагая их на расстоянии 6 мм друг от друга. Следить за тем, чтобы строчки были расположены параллельно первой, и ткань между ними не имела морщин

Примечания:

  1. При сшивании полотнищ, а также при обрыве нитки в процессе шитья, связывать узлом концы ниток.
  2. Все машинные швы после натяжения ткани на каркас заклеить поверхностной лентой на аэролаке А1Н одновременно с наклеиванием поверхностных лент при лакировании полотняной обшивки
Если ткань натягивается на деталь чехлом, сшивать полотнища однострочным швом по краю для придания им формы чехла (рис 4). Порядок сшивания при этом следующий:


Рис 4 Чехол из ткани для обшивки руля:
1 - трехстрочный шов с внутренней строчкой и подогнутой кромкой (в месте сшивки полотнищ), 2 - однострочный шов, 3 - ткань

  • сложить выкроенные полотнища так, чтобы сшиваемые края точно совпадали;
  • наметить линию сшивания полотнищ ткани на расстоянии 10 мм от края; припуск на шов учитывается шаблоном;
  • сшивать на швейной машине точно по намеченной линии, иначе чехол не будет плотно облегать каркас, а ткань натягиваться равномерно.
Примечания.
  1. Количество стежков для всех марок тканей должно быть 40-42 на 10 см.
  2. Применять для сшивания нитки №10 (ГОСТ 6309-59).
  3. В начале сшивания и по окончании его, а также при обрывах нити в процессе шитья связывать узлом концы ниток.

Подготовка каркасов

У каркасов деталей, подлежащих обтягиванию тканью, все острые углы и металлические части, которые соприкасаются с обшивкой, могут повредить ее в процессе эксплуатации, покрыть тканью или лентой. Это предохранит также защитное грунтовочное покрытие, нанесенное на поверхность элементов каркаса, обтягиваемого тканью, от аэролака при лакировании натянутой ткани.

Полки нервюр обматывать лентой: миткалевой, если полотняная обшивка не крепится на нее, и киперной, если обшивка крепится за намотанную ленту. Работу вести следующим образом:

Крепить ленту ниткой НАР (в 8 ниток) двубортную или (в 6 ниток) миткалевую следующим образом:


Рис 7 Схема пришивания ленты к полке нервюры

Большие поверхности элементов вместо ленты обшивать полотнищами из бязи или миткаля. Можно использовать отходы тканей, применяемых в качестве обшивки. Порядок покрытия таких элементов следующий:


Рис 9 Схема швов:
а - шов через край, б - шов елочкой

  • в процессе сшивания через каждые 200 - 250 мм нитку закреплять, завязывая узел.

    Обтягивание тканью элементов самолета

    Обтягивать крылья, поверхности управления и другие элементы самолета тремя способами: чехлом, сшитым по форме обтягиваемого каркаса, свободным полотнищем, комбинированным способом (чехлом и свободным полотнищем).

    Во всех случаях ткань располагать так, чтобы направление утка было перпендикулярно нервюрам (на крыльях линии полета). В помещении, где производится обтягивание, относительная влажность воздуха должна быть 40 - 70%, температура 12 - 25 градусов.

    Обтягивание чехлом, сшитым по форме каркаса

    Выкроенные по соответствующим шаблонам полотнища сшить машинным швом в виде чехла, имеющего форму обтягиваемого каркаса. Этот способ обтягивания применяют в том случае, когда на каркасе нет выступающих деталей, и обшивка крепится с внешней стороны. Обтягивать крылья скоростных самолетов этим способом не рекомендуется, так как при обтягивании чехлом трудно создать необходимое в этих случаях натяжение ткани.

    При обтягивании чехлом необходимо выполнить следующие операции:

    • проверить правильность сшивания чехла
    • натянуть сшитый чехол на каркас вручную, при этом следить за тем, чтобы ткань по всей поверхности каркаса была равномерно и хорошо натянута Примечание
      • Если чехол изготовлен несколько больших размеров и натягивается на каркас свободно, его необходимо сменить, а не подтягивать ткань по торцовой части каркаса
    • после того, как чехол натянут на каркас, ткань сильно подтянуть со стороны торцов и временно закрепить булавками за намотанную на каркас ленту (при металлической конструкции) или прикрепить гвоздиками (при деревянной конструкции)
    • проверить натяжение обшивки тензиометром ТП.
    • если натяжение соответствует нормам, то свободные концы чехла сшить вручную.
    • удалить булавки и гвоздики, которыми обшивка временно крепилась по торцовой части.
    Обтягивание свободным полотнищем

    При обтягивании свободным полотнищем (Рис 10) соблюдать следующий порядок операций:

    Обтягивание комбинированным способом

    Комбинированный способ обтягивания тканью (чехлом и полотнищем) применять в тех случаях, когда каркас имеет выступы и обтягивание чехлом всего каркаса затруднительно. При обтягивании комбинированным способом руководствоваться общими положениями, изложенными выше.

    Крепление обшивки к нервюрам

    Существуют следующие способы крепления обшивки, которые должны соответствовать указаниям чертежа на данное изделие.

    • Крепление нитками.
    • Крепление винтами.
    • Крепление заклепками.
    • Крепление металлической лентой

    Крепление обшивки нитками

    Крепление обшивки нитками можно производить следующими способами: сквозной прошивкой, за полку, за укрепительную ленту, машинным швом и через отверстия полки нервюры.

    При креплении нитками применять льняные нитки НАР (в 8 ниток). Чтобы ткань не перерезало ниткой, прокладывать между тканью и ниткой по месту крепления усилительную киперную ленту. Ширина ленты зависит от ширины полки нервюры и способа крепления обшивки.

    Сквозная прошивка

    Сквозную прошивку применяют только для крепления полотняной обшивки на крыльях и поверхностях управления нескоростных машин. Процесс крепления заключается в следующем:

    Крепление за полку нервюры

    Способ крепления за полку нервюры применять на верхней поверхности крыльев, когда полка снизу открыта. Схема подобного крепления обшивки показана на Рис 13. Порядок работы следующий:


    Рис 13 Крепление обшивки за полку нервюры
    1 - схема захлестывания нити

    • наложить усилительную киперную ленту на натянутую обшивку в местах крепления обшивки к нервюрам. Сначала закрепить один конец ленты, затем, слегка натягивая ее, второй конец ленты приколоть булавками к обшивке.

      • Примечание: ширина усилительной киперной ленты при этом способе крепления должна быть больше ширины полки нервюры на 18 - 20 мм т. е. лента должна перекрывать полку на 8 - 10 мм с каждой стороны.

    • конец нитки закрепить на полке нервюры и пропустить снизу через обшивку и усилительную ленту.
    • сделать шаг вдоль нервюры, пропустить иглу сквозь усилительную ленту и обшивку, по возможности ближе к полке и выпустить иглу наружу по другую ее сторону.

      • Примечание: нитка должна выходить напротив места входа, не допускать отклонения точки выхода

    • дальнейшую прошивку по длине нервюры производить подобным же образом (Рис 13а) через определенные расстояния, называемые шагом прошивки.

      Примечание:

      1. шаг данного крепления принимать равным 25 мм, соблюдать одинаковый шаг по всей длине нервюры
      2. при прошивании нить слегка натягивать

    • окончив прошивку в одном направлении, шить таким же образом в обратном направлении (Рис 13б), захлестывая одну нитку за другую.

      Примечание: при захлестывании нитки у каждого звена прошивки нитку, как и при перевом прошивании, хорошо подтянуть, чтобы предупредить всякую возможность ее ослабления

    • по окончании прошивки связать узлом нитки последнего стежка

    Крепление за усилительную ленту

    Полотняную обшивку на нижней поверхности крыла и на хвостовом оперении в большинстве случаев крепить, пришивая к киперной ленте, обмотанной вокруг полки нервюры или пришитой к ней. Порядок крепления следующий:

    Крепление машинным швом

    При креплении машинным швом ткань надо натягивать на каркас крыла дважды:

    Такой способ крепления обеспечивает гладкость поверхности обшивки и достаточную ее прочность в месте крепления. Его применяют, как правило, для крепления обшивки к верхней поверхности крыла при натяжении ткани свободным полотнищем.


    Рис 17 Крепление обшивки машинным швом при полках со сплошной стенкой
    1 - ткань, 2 - двубортная лента, 3 - прошивка на швейной машине нитками №1, прошивка льняными нитками НАР в 8 ниток


    Рис 18 Крепление обшивки машинным швом при металлических нервюрах коробчатого сечения
    1 - двубортная лента, 2 - ткань, 3 - прошивка нитками НАР, 4 - полка нервюры

    Крепление через отверстия в полке нервюр

    При этом способе крепления полка нервюры для утопления нитки, крепящей обшивку, имеет вогнутую поверхность с отверстиями посередине (рис 19). В эти отверстия вставить пистоны, предохраняющие от повреждения нитку, которой крепится обшивка. Обшивку крепить к полкам нервюр вощеной ниткой НАР (в 8 ниток) полукруглой иглой с радиусом, соответствующим шагу прошивки (расстоянию между отверстиями). Размер шага 15 - 20 мм. Применять это способ обшивки на рулях и элеронах.

    Порядок прошивки указанным способом следующий: (рис 19а)


    Рис 19 Крепление обшивки через отверстия полки нервюры

    • наложить на натянутую обшивку по месту нервюр усилительную киперную ленту, укрепить сначала один е конец. Затем, слегка натянув ленту, другой конец ленты закрепить булавками.
    • прошивать двумя иглами, находящихся на разных концах одной нитки, прокалывая одной иглой ткань, вводить нитку под полку нервюры и выводить в следующее отверстие.
    • другим концом нитки, располагающимся в этот момент над обшивкой, сделать вокруг конца, выходящего из под полки, простой узел, пропустить нитку под полку нервюры и вывести в следующее отверстие (рис 19 б).
    • натягивая оба конца нитки, затянуть узел и утопить его в отверстие, прижимая тем самым обшивку и усилительную ленту к полке нервюры.
    • дальнейшее крепление обшивки по длине нервюры производить тем же способом.
    • если длина нервюры, к которой крепится обшивка, незначительна, можно вести крепление одной иголкой, в этом случае сначала прошить в одном направлении, как показано стрелками на схеме (рис 19а), а затем в обратном, обязательно связывая стежки в месте встречи нитей.
    • при образовании последнего стежка концы нитей связать.

    Крепление обшивки винтами

    Крепление винтами применять только при металлических нервюрах, полки которых имеют изогнутую форму (рис 20) для утопления элементов крепления. Порядок крепления при этом следующий:

    Крепление обшивки заклепками

    Крепление обшивки заклепками производить по задней кромке обтягиваемого агрегата (например, руль поворота и др.). Сначала надо подготовить каркас, т. е. обшить обод 1 (рис 21) тканью 2 и обтянуть его тканью 3. после этого произвести крепление обшивки в следующем порядке:


    Рис 21 Крепление обшивки заклепками
    1 - обод, 2 и 3 - ткань, 4 - тканевая лента, 5 - круглая шайба, 6 - заклепка.

    • по месту крепления обшивки наклеить тканевую ленту 4 при помощи аэролака первого покрытия.

      Примечание: ленту нарезать из ткани, применяемой для обшивки.

    • в местах отверстий каркаса проколоть отверстия в обшивке и наклееной на нее тканевой ленте
    • положить по месту отверстий круглые шайбы 5
    • произвести крепление специальными заклепками 6

    Крепление обшивки фасонной металлической лентой

    Для крепления обшивки этим способом металлические полки нервюр должны иметь специальную форму (рис 22а). Порядок крепления при этом следующий:


    Рис 22 Крепление обшивки металлической лентой
    1 - нервюра, 2 - обшивка, 3 - металлическая лента, 4 - поверхностная лента

    • обтянуть каркас
    • наложить фасонную металлическую ленту на обшивку по нервюре
    • закрепить обшивку в полке нервюры, вдавив ленту в месие с обшивкой, путем ее распрямленя в гнезде нервюры по всей ее длине специальным приспособлением, в результате чего ткань плотно зажимается между бортами полки нервюры и крепящей металлической лентой (рис 22 б)

      Примечание: места закрепления обшивки закрыть поверхностными лентами при нанесении аэролака первого покрытия. Ленту нарезать из ткани, применяемой для обшивки

    Сшивание полотнищ по краям каркаса

    После крепления ткани к нервюрам на верхней и нижней поверхностях конструкции верхнее и нижнее полотнища по месту их временного крепления, сшить швом через край (роликовым).

    Лишнюю ткань в этих местах предварительно обрезать ножницами с таким расчетом, чтобы концы сшиваемых полотнищ можно было подогнуть на 8 - 10 мм, края сшиваемых полотнищ должны подходить друг к другу впритык. При сшивании не допускать ослабление натяжения ткани (рис 23)


    Рис 23 СШивание полотнищ по краям каркаса

    По окончании сшивания полотнищ по краям каркаса и крепления обшивки у лючков и отверстий удалить все булавки и гвоздики, которыми временно закрепляется ткань.

    Контроль качества крепления обшивки

    Полотняная обшивка должна быть хорошо прижата к полкам нервюр. Если это условие не будет соблюдено, то в полете при вибрации обшивки, нитки, крепящие ее, перетрутся и обшивка оторвется. Поэтому при приемке крыльев, оперения и фюзеляжей с законченным креплением ткани необходимо тщательно проверять качество крепления ткани к нервюрам. Для этого следует:

    • При креплении по схемам, приведенным на рисунках 12, 13, 14 и 19 в ряде мест подсунуть под нить закругленный (без острых углов) стерженек диаметром 2 - 3 мм и приподнять нитку, проходящую над обшивкой. Если нитка отойдет от обшивки свободно и останется в таком положении, закрепление выполнено плохо и прошивку необходимо сделать заново, не следует также допускать чрезмерного натяжения нитки, так как это может повлечь за собой прорезание ткани.
    • при креплении обшивки за ленту (рис 14) следить за тем, чтобы нитка захватывала усилительную ленту без пропусков и проходила под ней, как указано на рис 15.
    • при креплении машинным швом следить за тем, чтобы строчки шва отстояли друг от друга на одинаковом расстоянии по всей длине крепления, без зигзагов и не находили друг на друга, при креплении усилительной двубортной ленты к полкам нервюры строчки машинного шва не должны приходиться на край или вне полки нервюры, так как это создаст местные перенапряжения машинного шва и может привести к срыву обшивки.
    • при креплении винтами и металлической лентой обращать внимание на то, чтобы металлическая лента плотно прижимала обшивку по всей длине полки нервюры и винты были завинчены до отказа.
  • Начнем с моих странных ассоциаций 🙂 .

    Думаю, что очень многие люди возрастом старше среднего (может и помоложе тоже) помнят старый детский фильм, снятый по книге Л.И.Лагина «Старик Хоттабыч». Ни в кино, ни в книжке конечно ничего не говорится о конструктивно-силовых схемах самолетов:-), однако определенные ассоциации у меня все же в голове обозначились.

    Хоттабыч тогда «наколдовал» очень красивый телефон из цельного куска мрамора. Забавно, однако работать такой аппарат именно по причине «мраморности» естественно не мог, хотя и выглядел роскошно.

    Похожесть момента заключается в том, что ведь и самолет можно сделать из «цельного куска чего-нибудь ». Однако, при этом он так же, как неработающий мраморный телефон, вряд ли сможет выполнять какие-либо полезные функции. Очень вероятно, что и летать он тоже не сможет.

    Это только небольшие и сильно упрощенные модели самолетов времен того же фильма мальчишки (и я в их числе:-)) делали из цельных деревянных дощечек. Летали они неплохо, но это были всего лишь модели. Полет ради самого полета.

    Действительность .

    Любой самолет, от простейшего кукурузника до современного дальнемагистрального лайнера или скоростного истребителя, – это есть летательный аппарат тяжелее воздуха на службе у человека. Исходя из такого определения, он должен обладать несколькими, так сказать, фундаментальными качествами.

    Это, во-первых , хорошие аэродинамические свойства, в основе своей означающие достаточную (лучше побольше:-)) и минимальное аэродинамическое сопротивление. Во-вторых , достаточная возможность для самолета уверенно нести не только самого себя со всеми своими агрегатами и системами, но и полезную нагрузку в виде различных грузов, пассажиров или же вооружения.

    При этом как полезная нагрузка, так и все собственно самолетное оборудование должно быть размещено так, чтобы максимально возможно не ухудшать первое качество.

    Самолет в процессе эксплуатации находится под действием различных силовых факторов. Это силы аэродинамические, возникающие в полете, массовые нагрузки под действием собственного веса элементов, а также усилия от устройств, агрегатов и грузов внутри самолета и так или иначе подвешенных снаружи.

    А посему, третьим необходимым качеством должна быть достаточная прочность конструкции и ее жесткость, обеспечивающие безопасную и уверенную эксплуатацию летательного аппарата как на различных режимах полета, так и на земле. При этом она должна вступать в наименее возможное противоречие с первыми двумя качествами.

    Ну, и последнее (но отнюдь не по значимости!) очень важное свойство. Конструкция самолета при всех условиях хорошей вместимости, высокой прочности и отличных летных характеристик должна обладать по возможности минимальной массой .

    Все эти свойства и качества так или иначе влияют друг на друга и учитываются при выборе силовых схем и компоновки летательного аппарата и его основных частей. К основным, как известно, относятся и фюзеляж. Вот о нем и его возможных конструктивно-силовых схемах и поговорим чуть подробнее.

    Фюзеляж .

    Этот элемент является в некотором роде функциональным центром всей конструкции самолета, собирая ее части воедино. Он воспринимает все типы вышеуказанных силовых воздействий, усилия от присоединенных к нему крыла, оперения и агрегатов, а также от избыточного внутреннего давления воздуха.

    Распределение нагрузок на весь фюзеляж и его конструктивные элементы изучает, в частности, раздел всем известного сопромата – строительная механика . Интересная наука, насколько простая, настолько же и сложная. Без некоторых ее специфических терминов нам здесь не обойтись, хотя, конечно, никаких сложностей не будет, потому как не наш формат 🙂 …

    Существует несколько конструктивно-силовых схем фюзеляжа.

    Ферменный тип .

    На заре развития авиации, в предвоенные и военные годы (1-я и 2-я мировая война) достаточно широко был распространен ферменный тип конструктивно-силовой схемы . Фюзеляж сам по себе представлял пространственную ферму жесткого или же так называемого жестко-расчалочного типа. Силовые элементы такой конструкции – это стойки, лонжероны, раскосы, расчалки, распорки, различные расчалочные ленты и ферменные пояса.

    Элементы ферменного каркаса фюзеляжа.

    На первых «этажерках» (например, самолетах типа «Фарман») он вообще не был похож на фюзеляж в общепринятом сейчас понимании. Простая безобшивочная ферма для соединения всех частей аэроплана воедино в определенном порядке. Материалом для нее служило дерево.

    Но в дальнейшем с ростом скоростей и нагрузок такой фюзеляж видоизменялся. Появилась необходимость в обшивке. В качестве таковой достаточно широко применялось техническое текстильное полотно , на некоторых конструкциях даже вплоть до начала 60-х годов.

    Техническая ткань ПЕРКАЛЬ.

    Такое полотно представляет из себя хлопчато-бумажную ткань повышенной прочности. Наиболее известным его видом является перкаль . Области ее применения на самом деле достаточно широки (в зависимости от толщины). Она до сих пор, например, применяется для изготовления постельного белья класса «люкс». В техническом же плане ее еще в конце 18-го века начали использовать при изготовлении корабельных парусов.

    В этой области она применяется и по сей день, а в первой половине 20-го века использовалась в качестве внешней обшивки самолетов. При этом перкаль пропитывали специальными лаками (типа эмалита), что придавало ей определенную влагостойкость, а также влаго- и воздухонепроницаемость.

    Ткань АСТ-100.

    Две любопытные детали. 1.Слово «перкаль » в русском языке женского рода (ткань), но применительно, в частности, к авиации распространено употребление его в мужском роде. То есть перкаль – «он». 2. Перкаль в свое время получил смешное, но очень меткое прозвище «детская пеленка авиации».

    Среди технических тканей, применяемых в СССР в авиастроении, помимо перкаля достаточно широко использовались (и используются при необходимости) ткани АСТ-100 , АМ-100 , АМ-93 , имеющие улучшенные характеристики по сравнению с перкалем, хотя суть, в общем-то, оставалась той же.

    В качестве фюзеляжной обшивки также применялось дерево, в облегченном варианте, конечно. Это мог быть, например, клеенный деревянный шпон или фанера малых толщин, иногда для некоторых элементов конструкции бакелитовая (дельта-древесина).

    Недостатки .

    Однако, ферменная конструктивно-силовая схема имела недостатки, которые в процессе довольно бурного развития авиации в конечном итоге все-таки отодвинули ее на задний план.

    Обшивка таких фюзеляжей, иначе еще называемая «мягкой», конечно же была не всегда достаточно прочной. Но главное в том, что такая обшивка не работает, как силовой элемент в комплексе с ферменной конструкцией и не включена в силовую схему фюзеляжа (неработающая обшивка).

    Она воспринимает только местные аэродинамические нагрузки с частичной передачей их на ферменный каркас, то есть является дополнительным элементом конструкции, обладающим ощутимой добавочной (лишней) массой, но не делающей вклада в общую силовую работу.

    В общем-то, основной ее задачей является формирование более-менее обтекаемых аэродинамических поверхностей, то есть по сути уменьшение лобового сопротивления с возможной попыткой образовать некоторые замкнутые внутренние полости в фюзеляже, которым можно было бы найти полезное применение.

    Мягкая обшивка самолета Sopwith Pup.

    Кроме того, приемлемой долговечностью и сохранностью в процессе эксплуатации под действием атмосферных факторов мягкая обшивка тоже не отличалась. Особенно это касалось полотна. И, если военные самолеты не обладали большим сроком службы во многом из-за специфики их применения, то набиравшая обороты гражданская и транспортная авиация однозначно требовала аппараты с более длительным сроком использования.

    Да и попытка использовать внутренние полости тоже была малоэффективна. В пространственной ферме достаточно сложно компоновать грузы и внутреннее оборудование из-за неизбежного наличия подкосов, растяжек и др., что, конечно, делает практически невозможным нынешнее применение таких фюзеляжей на большинстве «серьезных» самолетов, за исключением отдельных моделей легкомоторной или спортивной авиации.

    «Металлизация… »

    В стремлении справиться с этими и другими недостатками и как-то улучшить положение, появились опыты с применением в конструкции самолетов других материалов. Взгляды некоторых «продвинутых» изобретателей обратились к металлу, а конкретно к стали . Каркасы ферменных фюзеляжей все чаще выполнялись из стальных труб или открытых профилей, обычно с применением сварки.

    Самолет REP 1.

    Первым самолетом со стальным ферменным фюзеляжем считается самолет француза Роберта Эсно-Пельтри (Robert Esnault-Pelterie) REP-1 . Остальная силовая конструкция этого аэроплана была деревянной, а обшивка полотняной. Самолет полетел в ноябре 1907 года. Летал он медленно (около 80 км/ч) и недалеко – порядка нескольких сотен метров.

    В середине 20-х годов, когда самолеты уже, можно сказать, научились летать, стальных ферменных каркасов строилось уже больше, чем деревянных. При этом обшивка чаще всего была все еще полотняная или фанерная. Да и в качестве материала для дополнительных силовых элементов частенько использовалось дерево.

    Но уже в начале 1910-х годов строились первые цельнометаллические самолеты. Как в конструкции, так и в материалах существовало определенное разнообразие, несмотря на единичные, по сути дела, экземпляры таких летательных аппаратов.

    Не все из них сумели подняться в небо. Некоторые не сделали этого никогда, некоторые не с первого раза, а только после переделок. Главная причина тому была одна – большая масса . Ведь самолеты такого типа строились тогда практически наугад.

    Например, первым реально полетевшим самолетом, в котором каркас фюзеляжа, крыла и обшивка были сделаны из стали стал немецкий самолет конструкции профессора Ганса Рейсснера (Hans Reissner) сделанный при участии, содействии и, в общем-то, на деньги фирмы Junkers . Самолет был сделан по схеме «утка» и носил то же название – Ente (нем.).

    Самолеты Рейсснера.

    В первом варианте фюзеляж не имел обшивки. Самолет полетел не сразу, однако в мае 1912 года это все-таки произошло. В дальнейшем он летал относительно успешно, пока в январе 1913 года не произошла катастрофа с гибелью пилота. Аппарат попал в штопор.

    Однако, в течение этого же года самолет восстановили, несколько изменив его конструкцию (добавились кили). Фюзеляж получил полотняную обшивку и аэроплан продолжил полеты.

    В 1915 году одним из самых известных полетевших цельно-металлических летательных аппаратов стал самолет все той же фирмы Junkers — Junkers J 1 . На нем основные элементы были стальные, в том числе и обшивка всех элементов конструкции, сделанная из тонких листов стали. Летные характеристики его правда оставляли желать лучшего. Он получил прозвище Blechesel (что-то типа «жестяной осел») и в серию не пошел.

    Цельностальной самолет Junkers J 1.

    Вместо него достаточно массово строили следующий самолет Юнкерса –J4 (или Junkers J I (римская цифра)). Он тоже был цельнометаллическим, но не цельностальным, потому что задняя часть ферменного фюзеляжа и обшивка крыла и оперения была сделана не из стали.

    Самолет Junkers JI (J4).

    И, вообще-то говоря, первым цельно- металлическим самолетом, поднявшимся в воздух был самолет французов Шарля Понше и Мориса Прима (Charles Ponche, Maurice Primardо) под названием Ponche-Primard Tubavion .

    Название происходило от конструкции фюзеляжа, в основе которой была стальная труба, а на ней уже «вешались» все остальные элементы. В качестве обшивки использовались листы алюминия. Фюзеляж имел обтекатели и защитные кожухи.

    Самолет Ponche-Primard Tubavion.

    Самолет, построенный в 1911 году, летать отказывался по причине большой массы и слабосильного мотора. После того, как с него сняли все кожухи, некоторые колеса шасси и еще кое-какие детали, он все же полетел в марте 1912 года. В дальнейшем обшивка крыла все-таки была заменена на полотняную.

    Улучшенный вариант самолета Ponche-Primard Tubavion.

    Масса всегда была и остается одним из основных критериев возможностей самолета. Делать элементы конструкции, обладающие традиционной прочностью металла и легкостью дерева было мечтой любого тогдашнего энтузиаста от авиации. Именно поэтому на первые позиции стал выходить не так давно освоенный в массовом производстве алюминий.

    Первоначально были попытки использования чистого алюминия в виде листов для обшивки, вместо полотна. Пример – вышеупомянутые аэропланы Tubavion и Junkers J I. Однако, чистый алюминий – металл, как известно, мягкий и непрочный, и несмотря на его очень соблазнительное качество — легкость, применение его в виде материала для силовых (работающих) элементов крайне малопродуктивно.

    Например, на самолете Junkers J I обшивка была алюминиевая из листов толщиной 0,09 мм. Она была гофрирована для упрочнения и возможности восприятия некоторых нагрузок, но деформировалась и разрывалась даже при нажатии рукой, в частности во время перекатывания аппарата по земле.

    Дюралевая задняя часть ферменного фюзеляжа и алюминиевая обшивка самолета Junkers J I.

    Однако, на этом же самом самолете задняя часть ферменного фюзеляжа была изготовлена из другого, заслуживающего гораздо большего внимания материала. И хотя алюминий в последствии получил символическое название «крылатый металл» , оно, говоря точнее, должно быть адресовано для его сплава, называющегося дюралюминий (или дюраль). Именно этот сплав является сейчас основой всей мировой авиации.

    Дюралюминий значительно выгоднее алюминия в массовом и прочностном отношении. То есть практически при той же массе этот сплав обладает значительно большей твердостью, прочностью и жесткостью. Марок этого сплава достаточно много, в том числе и в разных странах. Отличия марок могут быть как в составе элементов, так и в технологии изготовления (термообработка). Однако, в основном это сплавы состоящие из легирующих добавок (медь – около 4,5%, магний – около 1,5% и марганец – около 0,5%) и самого алюминия.

    Название дюралюминий (дуралюмин, дуралюминий, дюралюмин) происходит от названия немецкого города Дюрен (Düren), где в 1909 году было впервые начато промышленное производство этого сплава. А слово дюраль , которое у нас употребляется скорее как жаргонное, на самом деле фирменное название (Dural®).

    Одна из самых известных марок дюраля, производящихся в России (СССР) – Д16 . Он так или иначе применен на всех самолетах, произведенных или производящихся у нас, хотя, конечно, достаточно и других более специализированных или совершенных в прочностном отношении марок(например, Д18, В65, Д19, В17, ВАД1 и др.).

    А начиналось все с первой половины 1922 года, когда в СССР был получен первый советский алюминиевый сплав, пригодный для авиастроения и не уступающий по характеристикам тогдашним немецким сплавам.

    Назвали его кольчугалюминием , по названию г.Колчугино Владимирской области, в котором располагался металлургический завод. Он отличался от немецкого дюралюминия добавкой никеля (около 0,3%), иным соотношением меди и марганца, а также термообработкой.

    Самолет АНТ-2, построенный полностью из кольчугалюминия.

    Название со временем было заменено на традиционное и сплав получил наименование Д1 , под которым используется до сих пор, хотя и не так часто из-за достаточно низких характеристик по сравнению с вновь разработанными материалами.

    Появление в достаточно широкой эксплуатации дюралюминия сделало возможным выполнить обшивку в конструктивно-силовой схеме с ферменным фюзеляжемболее прочной и долговечной. Для некоторых моделей самолетов листы дюраля делались гофрированными с целью повышения ее устойчивости.

    Гофрированная обшивка самолета ТБ-1.

    Гофрированная обшивка самолета Junkers-52

    Гофрированная дюралевая обшивка фюзеляжа такой схемы могла в некоторой степени работать на восприятие изгибающего момента (на крыле она работала на кручение) и становилась таким образом «частично работающей» . Однако, это «частичность» не устраняла главных недостатков ферменной конструкции. Обшивка не была включена в общую силовую схему и, по большей части, играла роль элемента с дополнительной массой.

    Балочные фюзеляжи .

    С развитием подходов к авиационному конструированию, освоением новых материалов и приобретением опыта появилась возможность разработки новых типов конструктивно-силовых схем , в которых обшивка уже становилась полностью рабочим элементом (рабочая обшивка ).

    Фюзеляж - коробчатая балка.

    Наиболее рациональной для большой авиации и лишенной недостатков ферменных фюзеляжей стала конструкция, представлявшая собой тонкостенную оболочку (собственно обшивка большей или меньшей толщины), подкрепленную изнутри различными силовыми элементами (силовым каркасом или силовым набором , продольным и поперечным) и имеющая полезные внутренние объемы.

    В этом случае фюзеляж называют балочным (балочный тип), то есть, говоря терминами из строительной механики, он представляет из себя тонкостенную коробчатую балку, которая закреплена на крыле и воспринимает на себя перерезывающие силы и изгибающий момент, в любом своем сечении, в горизонтальной и вертикальной плоскостях, а также крутящий момент.

    В частности… Крутящий момент от вертикального оперения нагружает обшивку всего контура, создавая в ней касательные напряжения. Вертикальная сила от стабилизатора воспринимается обшивкой боковых поверхностей фюзеляжа параллельных действию силы — работа на сдвиг.

    Изгибающий момент стабилизатора воспринимается обшивкой и подкрепляющими элементами верхней и нижней части фюзеляжа (растяжение-сжатие). Поперечная сила от киля также нагружает верхнюю и нижнюю части фюзеляжа, параллельные действию силы, вызывая в них касательные напряжения.

    Кроме того в районе герметизированных отсеков к нагрузкам присоединяется и избыточное внутреннее давление, действующие изнутри фюзеляжа при полетах на высоте. Активное участие в процессе восприятия нагрузок принимает работающая обшивка . Примерная схема возможного их действия показана на рисунке (по материалам ЦНИТ СГАУ).

    Нагрузки, действующие на балочный фюзеляж.

    Фюзеляжи балочного типа в процессе разработки различных конструкций разделились на три вида. Первый — это фюзеляж типа «монокок» , во французском «мonocoque». Слово произошло от греческого «monos» – «единый» и французского «coquе» — скорлупа. В таких конструкциях внешняя оболочка, то есть обшивка, является главным силовым элементом, иногда единственным, воспринимающим все силовые факторы.

    Она может быть достаточно мощной и жесткой и какие-либо дополнительные поперечные силовые элементы обычно не требуются и могут устанавливаться только в местах, где есть какая-то дополнительная сосредоточенная нагрузка, то есть какие-либо внешние подвески, присоединение крыла или каких-либо агрегатов (обычно это шпангоуты), в местах вырезов в фюзеляже или же в местах, где соединяются отдельные листы обшивки (чаще всего стрингеры).

    То есть фюзеляжи самолетов по сути дела могут быть без работающего каркаса. Первые такие образцы появились уже в 1910-х годах. Это были самолеты чаще всего спортивной направленности, то есть для достижения больших скоростей. С этой целью использовались заглаженные фюзеляжи круглого сечения, имеющие ощутимо меньшее лобовое сопротивление по сравнению с ферменными.

    Реплика самолета Deperdussin Monocoque.

    Типичным представителем такого класса самолетов был французский спортивный аэроплан Deperdussin Monocoque . Сам принцип изготовления его фюзеляжа стал основой названия этого самолета (Monocoque).

    Фюзеляж состоял из двух продольных половин, каждая из которых выклеивалась из трех слоев деревянного шпона в специальных формах в виде раковин (или скорлупы). Далее эти половины соединялись, склеивались между собой и обклеивались тканью.

    Монококовые фюзеляжи достаточно дороги в изготовлении, и окончательно они потеснили ферменные только после Второй мировой войны, когда исчезла необходимость быстрого выпуска большого количества боевых самолетов.

    Однако типичный монокок, хорошо воспринимая растяжение и изгиб, гораздо хуже работает на сжатие (зависит от толщины и жесткости обшивки конечно), поэтому подавляющее большинство фюзеляжей современных самолетов построено с внутренним подкрепляющим силовым набором. Такие конструктивно-силовые схемы носят название полумонокок (услиленный монокок), и в них обшивка работает совместно с продольным набором силовых элементов.

    Полумонококовые конструкции, в свою очередь, бывают двух видов: балочный стрингерный (стрингерный полумонокок) и балочный лонжеронный (лонжеронный полумонокок).

    Стрингерный полумонокок. Фюзеляж самолета ATR-72.

    В первом работающая обшивка подкреплена продольными силовыми элементами – стрингерами . Их довольно большое количество и расположены они достаточно часто, что позволяет обшивке совместно с ними воспринимать весь изгибающий момент (помимо других нагрузок – крутящий момент и перерезывающая сила), работая при этом на растяжение-сжатие. Устойчивость обшивки повышают шпангоуты, установленные с относительно малым шагом.

    Во втором изгибающий момент воспринимается специальными продольными элементами – лонжеронами и балками . Количество их невелико и они имеют обычно большое сечение. Обшивка же, подкрепленная стрингерами, воспринимает крутящий момент и перерезывающую силу, работая только на сдвиг, и практически не участвуя в восприятия изгиба.

    Лонжеронная схема. А - лонжероны, В - стрингеры, D - работающая обшивка.

    На рисунке (из материалов ЦНИТ СГАУ) показаны действие усилий (перерезывающие силы, изгибающий и крутящий моменты), воспринимаемых лонжеронным фюзеляжем (общая картина).

    Нагрузки, воспринимаемые в балочной лонжеронной схеме.

    Основная масса современных самолетов, как уже говорилось, имеют фюзеляжи типа полумонокок. Лонжеронный вариант достаточно выгоден для военных самолетов с двигателем в хвостовой части фюзеляжа. В этом случае в фюзеляже удобно размещать узлы крепления двигателя, делать вырезы между лонжеронами под необходимые полезные объемы (кабина, топливные баки, агрегаты) без нарушения целостности главных силовых элементов.

    Стрингерные фюзеляжи выгодны для транспортных и пассажирских самолетов. Однако вырезы в таких фюзеляжах нарушают целостность силовых элементов, поэтому в таких местах требуется усиление каркаса.

    Фюзеляж самолета В-17G. Стрингерный полумонокок.

    Совмещенная конструкция фюзеляжа самолета Hawker Typhoon MkIB. Передняя часть - ферменная, задняя часть - полумонокок.

    Самолет Hawker Typhoon MkIB.

    Так как плюсы и минусы есть у всех типов и вариантов конструкций, то, в принципе, возможно их совмещение в определенном смысле в пределах одного летательного аппарата. Количество и сечение стрингеров, сечение лонжеронов и толщина обшивки может меняться в разных местах фюзеляжа. Все зависит от типа, предназначения, параметров летательного аппарата и его оборудования.

    Ферменные фюзеляжи в настоящее время используются редко и в основном для самолетов малой авиации и спортивных. Примером может служит спортивный Су-26 , имеющий ферменный стальной фюзеляж и стеклопластиковую обшивку на нем (стеклопластиковые панели с пенопластовым заполнителем).

    Силовая конструкция самолета Су-26.

    Немного геодезии .

    Существует еще один тип конструктивно-силовой схемы , применявшийся в 30-х годах при изготовлении самолетов, правда значительно реже классических схем. Это так называемая геодезическая конструкция планера, то есть фюзеляжа и крыла.

    В этой конструкции силовые элементы, воспринимающие нагрузки, располагаются вдоль геодезических линий. Для фюзеляжа, который по форме близок к цилиндру – это винтовые линии (спирали) и окружности. В итоге образуется сетчатая конструкция с узлами соединения элементов в многочисленных точках пересечения.

    Она воспринимает крутящий момент и перерезывающие силы. Изгибающий момент воспринимают дополнительные лонжероны в фюзеляже. Силовыми элементами в этом случае служат легкие и тонкие профили. Вся конструкция отличается высокой прочностью при относительно малой массе .

    Бомбардировщик Vickers Wellington.

    Боевые повреждения фюзеляжа самолета Vickers Wellington.

    Кроме того, она в отличие от ферменной схемы полностью оставляет свободными все внутренние полости фюзеляжа, что былохорошим плюсом особенно для больших самолетов. Также при постройке такой конструкции легче было соблюсти требуемые аэродинамические формы без больших затрат на приспособления и инструменты.

    Геодезическая схема также могла быть полезна для повышения боевой живучести военных самолетов. Так как каждый элемент конструкции мог воспринимать нагрузки других элементов при их разрушении, то боевое повреждение часто не вело к фатальному разрушению всей конструкции.

    По такой схеме, например, был построен британский бомбардировщик Vickers Wellington (производился в 1936-1945 годах). Однако, обшивка в этой схеме была неработающая (на Веллингтоне полотняная). С ростом скоростей полета она не выдерживала аэродинамических нагрузок, и профиль крыла деформировался. Это стало одной из причин отказа от такой схемы уже в послевоенное время.

    Немного более конкретно о силовых элементах.

    Продольный силовой набор .

    Стрингеры . Продольные силовые элементы для подкрепления обшивки. Работают вместе с обшивкой на растяжение-сжатие, а также увеличивают ее устойчивость при работе на сдвиг от кручения фюзеляжа. Обычно устанавливаются по всей длине фюзеляжа .

    Профили стрингеров и лонжеронов.

    Изготавливаются из готовых профилей различной конфигурации, как замкнутой, так и разомкнутой и могут иметь различные уровни прочности. Материал — дюралюминий различных марок (например Д16 и В95), в зависимости от конкретных преобладающих условий работы стрингера.

    Лонжероны (балки). В общем-то похожи на стрингеры, но имеют более мощное сечение. Часто являются одним из основных конструктивных элементов, не только фюзеляжа, но и крыла и хвостового оперения, применяются, в принципе во многих инженерных конструкциях, а не только в авиации. Многие наверняка слышали о об автомобильных лонжеронах.

    Бимс в конструкции полумонокока.

    Основная функция – восприятие изгибающего момента и осевых сил, т.е. работа на растяжение-сжатие.Однако, лонжерон коробчатого сечения может участвовать и в восприятии крутящего момента. Лонжероны могут быть цельными или составными, состоящими из нескольких профилей. Материал – алюминиевые сплавы и сталь различных марок.

    Коробчатые лонжероны , одна из стенок которых – обшивка, часто располагают по окантовке больших вырезов в фюзеляже для их усиления. Например, в районе грузового люка на транспортных самолетах. Такие лонжероны называют бимсы .

    К вспомогательному продольному силовому набору можно отнести также полы, в частности в отсеках транспортных самолетов и салонах пассажирских самолетов, основу которых составляют силовые балки.

    Поперечный силовой набор .

    Шпангоуты. У этого элемента две основные функции. Первая – формирование и сохранение формы фюзеляжа, точнее его поперечного сечения. Для этого предназначены нормальные шпангоуты. Они подкрепляют обшивку, то есть нагружаются внешним аэродинамическим или внутренним избыточным давлением, приходящимся на обшивку фюзеляжа. Шаг их расположения выбирается из соображений ее наиболее эффективной работы. Обычно это интервал от 150 до 600мм.

    Фюзеляж-полумонокок самолета Sukhoi Superjet 100. Нормальные шпангоуты и стрингеры.

    Вторая – восприятие различных сосредоточенных нагрузок большой величины типа узлов крепления и соединения тяжелого внутреннего и внешнего оборудования, двигателей, различных пилонов и подвесок, присоединение консолей крыла. Это усиленные (силовые) шпангоуты . Их количество на летательном аппарате обычно значительно меньше, чем нормальных.

    Примеры усиленных рамных шпангоутов.

    Силовые шпангоуты обычно изготавливаются в виде рамы (рамные ), которая может быть сборной или монолитной. Сама рама работает на изгиб, распределяя внешнюю нагрузку по периметру обшивки. В любом сечении такой рамы действует и перерезывающая сила.

    Усиленный рамный шпангоут с узлами крепления крыла к фюзеляжу.

    Силовые шпангоуты также могут располагаться по краям больших вырезов в фюзеляже. Кроме того они используются в качестве перегородок, воспринимающих избыточное давление в гермоотсеках . В этом случае кольцевое пространство чаще всего зашивают стенкой, подкрепленной силовыми элементами типа стрингеров. Эти стенки могут иметь сферическую форму.

    Обшивка . Такой же силовой элемент, участвующий в силовой работе всего фюзеляжа балочного типа. Для основной массы современных балочных фюзеляжей изготавливается из стандартных листов дюралюминия, которые формуются по очертаниям фюзеляжа. Стыковка (или нахлест) листов производится на силовых элементах (стрингерах, шпангоутах).

    Наиболее распространенный способ крепления обшивки к силовому каркасу– заклепочные соединения , но может применяться сварка и склейка. Обшивка может крепиться только к продольному набору (стрингерам), только к поперечному (шпангоутам) или к тем и другим. Это, зачастую, может определять необходимую толщину (т.е. и массу) обшивки.

    Первый случай хорош с точки зрения улучшения аэродинамики, так как отсутствуют вертикальные заклепочные швы и, соответственно, уменьшается аэродинамическое сопротивление. Однако, при этом обшивка с ростом нагрузок быстрее теряет устойчивость.

    Чтобы этого избежать и не увеличивать ее толщину, а значит и массу всей конструкции, ее соединяют со шпангоутами. Это может делаться непосредственно или через специальные дополнительные элементы, называемые компенсаторами . В таком случае шпангоуты называют распределительными . Они дополнительно нагружаются от обшивки внутренним избыточным давлением, действующим на нее.

    Второй случай, когда обшивка крепится только к шпангоутам и не подкреплена стрингерами, относится к фюзеляжам-монококам или как еще их называют обшивочным фюзеляжам . Как уже упоминалось раньше, обшивка сама по себе плохо работает на сжатие, поэтому прочность такого фюзеляжа определяется возможностями по сохранению устойчивости обшивки именно в зонах сжатия.

    Чтобы эти возможности повысить для монокока есть только один способ – увеличить толщину обшивки, а значит и массу всей конструкции. Если самолет большой, то это увеличение может быть значительным. Это основная причина невыгодности фюзеляжа такого типа.

    Толщина обшивки может также изменяться в разных сечениях фюзеляжа в зависимости от наличия вырезов (особенно это касается стрингерных фюзеляжей), или гермоотсеков с избыточным давлением.

    Кроме того она может зависеть от места расположения обшивки на фюзеляже. Например, при воздействии собственной весовой нагрузки верхняя часть обшивки фюзеляжа работает на растяжение всей своей площадью совместно со стрингерами, а нижняя часть при этом на сжатие только площадью, подкрепленной стрингерами, поэтому и потребная толщина сверху и снизу может быть разная.

    В настоящее время довольно широко применяются в качестве обшивки механически (фрезерование) или химически (травление) обработанные листы больших размеров с готовой уже переменной толщиной, а также монолитные фрезерованные панели необходимой переменной толщины с выфрезерованными подкрепляющими продольными ребрами-стрингерами .

    Фрезерованные панели обшивки самолета Sukhoi Superjet 100.

    Такого рода конструктивные узлы обладают большей усталостной прочностью, равномерным распределением напряжений. Отсутствует необходимость многоместной герметизации, как в заклепочных соединениях. Кроме того улучшается аэродинамика из-за снижения сопротивления в результате гораздо меньшего количества заклепочных швов.

    Что касается материалов, то самым распространенным и универсальным, как уже говорилось выше, остается дюралюминий различных марок, более или менее приспособленный для различных условий работы и конструктивно-силовых схем и элементов летательных аппаратов.

    Однако, при постройке самолетов, работающих в особых условиях (например, при высоком кинетическом нагреве ) применяется сталь особых марок и титановые сплавы. Ярким представителем таких самолетов является легендарный МиГ-25 , фюзеляж которого практически целиком сделан из стали и главный способ соединения его элементов – сварка.

    —————————

    Столь же значимыми, как и фюзеляж элементами любого самолета являются крыло и оперение. В силовом плане они также воспринимают усилия и передают их на фюзеляж, на котором все нагрузки уравновешиваются. Конструктивно-силовые схемы крыльев современных самолетов имеют много общего со схемами фюзеляжей. Но с этим мы ознакомимся уже в следующей статье на подобную тему….

    До новых встреч.

    В заключение картинки, которые не поместились в текст.

    Шпангоуты фюзеляжа самолета F-106 Delta Dart (усиленные рамные и нормальные).

    Рамные силовые шпангоуты фюзеляжа самолета F-16 с узлами крепления оборудования.

    Силовой шпангоут для гермоотсека самолета Sukhoi Superjet 100.

    Усиленный шпангоут в виде стенки гермоотсека.

    Составные рамные шпангоуты.

    Стрингеры и шпангоуты самолета Вoeing-747.

    Ферменный каркас фюзеляжа самолета Piper PA-18.

    Самолет Piper PA-18.

    Типы конструктивно-силовых схем фюзеляжа; 1 - ферменная, 2 - ферменная с гофрированной обшивкой, 3 - монокок, 4 - полумонокок.

    Типы конструкции фюзеляжей.

    Фюзеляж самолета Supermarine Spitfire. Полумонокок.

    Фюзеляжи самолетов Vickers Wellington в заводском цеху.

    Обшивка образует внешнюю поверхность крыла. От качества поверхности крыла в определенной степени зависят его аэродинамические характернее тики. В современном самолетостроении преимущественное распространение получила жесткая металлическая обшивка, как наиболее полно удовлетворяющая требованиям аэродинамики, прочности, жесткости м массы. Металлическая обшивка чаще всего выполняется из листов. Толщина ее колеблется от 0,5 мм в очень мало нагруженных местах у конца крыла до 4…6 мм и даже больше в сильно нагруженных местах в корневых сечениях.

    Наибольшее распространение на современных самолетах получила обшивка из высокопрочных алюминиевых сплавов. На самолетах, летающих на больших сверхзвуковых скоростях (М>2), применяется обшивка из жаропрочных сталей и титановых сплавов, не теряющая своих механических свойств при повышенных температурах в условиях аэродинамического нагрева конструкции.

    Соединение листов обшивки друг с другом может производиться внахлестку, внахлестку со снятой кромкой, внахлестку с подсечкой и встык. Наиболее простым является соединение внахлестку, но оно вызывает наибольшее аэродинамическое сопротивление. Для уменьшения сопротивления применяют стык внахлестку со снятой кромкой и стык внахлестку с подсечкой.

    Последний стык может производиться только для тонких листов толщиной в 0,5…1 мм. Наилучшим в аэродинамическом отношении и получившим по этому наибольшее распространение на современных самолетах является соединение встык, хотя здесь и приходится ставить как минимум двух рядный заклепочный шов, тогда как в других схемах можно обойтись и однорядным швом Рядность шва определяется действующими нагрузками.

    Стыки обшивки осуществляются по элементам каркаса: лонжеронам, стрингерам и нервюрам. В настоящее время для крепления обшивки применяется потайная клепка. Отверстия на наружной поверхности зенкуются под закладную головку потайной заклепки. При клепке очень тонких листов толщиной 0,5…0,6 мм отверстия под закладную головку заклепки могут подштамповываться. В этом случае подштамповываются или зенкуются отверстия и в элементах тех деталей, к которым приклепывается такая обшивка.

    На современных самолетах широко применяется слоистая обшивка, состоящая из двух несущих слоев, соединенных между собой легким заполнителем. Несущие слои обшивки изготавливаются чаще всего из алюминиевых листов. Заполнитель может быть сотовым, пористым или выполняться из гофрированного листа. Сотовый заполнитель изготавливается из металлической фольги толщиной 0,03…0,02 мм. Ленты фольги гофрируются и соединяются между собой путем склейки, пайки или точечной сварки.

    Вид сотов зависит от формы гофра. Сотовый заполнитель может изготавливаться и из гофрированных пластмассовых лент, склеиваемых между, собой. Пористый заполнитель изготавливается из пористых пластмасс, имеющих малую плотность. Обшивка с.заполнителем из гофрированного листа хорошо воспринимает нагрузки, направление которых совпадает с направлением гофра.

    Несущие листы-обшивки приклеиваются к заполнителю, а металлические листы могут и припаиваться к металлическому заполнителю. На крыльях сверхзвуковых самолетов, подверженных большому аэродинамическому нагреву, несущие слои обшивки могут изготавливаться из титановых листов или из листов жаропрочной стали, а сотовый заполнитель — из фольги этого же материала.

    Слоистая обшивка имеет целый ряд преимуществ в сравнении с однослойной. Слоистая обшивка имеет большую поперечную жесткость, а следовательно, и высокие критические напряжения. Так, при толщине несущего слоя 5/2 = 1 мм и при h = 10 мм, это отношение равно 75, а при h = 20 мм — 300. Примерно в таком же отношении повышается и поперечная жесткость. По этой причине слоистая обшивка не нуждается в частом стрингерном наборе, позволяет значительно уменьшить чисел нервюр.

    Крыло со слоистой обшивкой может оказаться легче крыла с однослойной обшивкой, подкрепленной стрингерами. Качество поверхности крыша со слоистой обшивкой из-за отсутствия заклепочных швов получается более высоким. Слоистая обшивка обладает хорошими теплоизоляционными свойствами, что делает выгодным ее применение на подверженных большому аэродинамическому нагреву крыльях сверхзвуковых самолетов, внутренние объемы которые заняты горючим.

    Но слоистая обшивка имеет и большие недостатки. Технология изготовления слоистой обшивки сложна, сложен контроль качества склейки или припайки несущих слоев к заполнителю, затруднен ремонт обшивки. Большие трудности встречаются при осуществлении стыков частей слоистой обшивки и стыка ее с элементами силового набора крыла.

    В стыке необходимо осуществить соединение не только сильно нагруженных несущих слоев обшивки, но и заполнителя, который обеспечивает совместную их работу. Стык панелей обшивки производится по специальным окантовкам. Окантовка приклеивается или припаивается к несущим слоям обшивки и к заполнителю. Соединение панелей, осуществляется при помощи винтов с анкерными, гайками или болтов.

    Стык обшивки с элементами силового набора крыла производится также с использованием окантовок. С целью уменьшения массы слоистой обшивки следует стремиться к сокращению количества стыков. Если из конструктивных и технологических соображений можно изготовлять длинные панели обшивки, превышающие длину, листов, идущих на несущие ее слои, то сначала соединяют накладками несущие слои при помощи склейки или пайки, а затем соединяют их с заполнителем.

    В моноблочных крыльях современных скоростных самолетов широкое применение находит обшивка из монолитных панелей. В таком крыле почти все нагрузки воспринимает обшивка и масса ее составляет основную часть массы крыла. Применение монолитной обшивки позволяет снизить массу крыла благодаря соответствию размеров сечений действующим нагрузкам и значительно меньшему, чем в панелях с листовой обшивкой, количеству соединений.

    Крылья, выполненные из монолитных панелей, обладают повышенной жесткостью на кручение, что благоприятно с точки зрения аэроупругости. Однако монолитные панели в сравнении со сборными имеют и ряд недостатков: большая трудоемкость изготовления, значительный отход материала, высокая стоимость, трудность ремонта, худшие характеристики усталостной прочности. Монолитные панели изготовляются фрезерованием из плит, прессованием; прокаткой, горячей штамповкой и литьем. Плиты, из которых изготовляются фрезерованием панели, получаются горячей прокаткой или ковкой.

    Панели сложной конфигурации фрезеруют на специальных копировально-фрезерных станках и станках с программным управлением. Панели более простой конфигурации можно изготовлять и с помощью химического фрезерования. Криволинейные панели получаются либо фрезерованием плоской панели с последующей гибкой, либо приданием плите необходимой кривизны свободной ковкой с последующим фрезерованием по требуемому контуру.

    Прессованием изготовляются панели постоянного сечения параллельным продольным набором. После, термообработки панель подвергается механической обработке, формовке и окончательной доводке по обводу. Прокаткой можно получать и панели вафельного типа. Перед прокаткой заготовку и матрицу нагревают до температуры горячей штамповки.

    Дальнейшая обработка панели производится так же, как и обработка прессованной панели. При горячей штамповке панелей продольный и поперечный набор и толщина панели могут иметь переменное по длине сечение, форма поперечного сечения ребер трапециевидная. Так как штамповка не позволяет получить требуемую точность размеров ребер и толщины обшивки, необходима калибровка панелей либо дополнительная механическая обработка.

    Изготовление панелей литьем позволяет получить конструкцию со сложным силовым набором и с обшивкой значительно меньшей толщины, чем при других способах получения панелей. Панели, изготовленные литьем, требуют меньшего объема механической обработки. Каждый из способов изготовления панелей имеет свои преимущества и недостатки.

    Преимуществами панелей, изготовленных фрезерованием из плит, являются возможность получения панелей сложной конфигурации с переменными сечениями, относительно высокая точность и чистота поверхностей сравнительная простота и дешевизна применяемой оснастки; К недостаткам следует отнести большой отход материала (до-90%).высокую трудоемкость изготовления и худшие по сравнению со штампованными панелями механические свойства. Преимуществами прессованных панелей являются их высокие механические свойства, малый отход материала и меньшая по сравнению с горячей штамповкой мощность оборудования.

    Недостатком является ограниченность форм и размеров панелей. К преимуществам панелей, полученных прокаткой, следует отнести возможность получения значительно меньшей, чем у прессованных панелей, толщины обшивки (до 1 мм и даже менее), а в сравнении с горячее штампованными панелями — меньшую мощность оборудования и сравнительную простоту, а следовательно, и меньшую стоимость оснастки. Недостатком горячекатаных панелей является ограниченность геометрических форм в сравнении со штампованными панелями.

    Горячее штампованные панели обладают почти такой же высокой прочностью, как и прессованные панели. При штамповке панелей обеспечивается требуемое изменение площади сечения ребер и толщины обшивки, получается малый отход материала. Крупным недостатком этого способа изготовления панелей является большая мощность оборудования.

    Так, для изготовления панели из алюминиевых сплавов требуется усилие в 300000 Н на один квадратный метр. Поэтому размеры штампованных панелей ограничены. Большая трудоемкость и длительность цикла изготовления штампов и невозможность получить требуемую точность размеров ребер и толщины обшивки без дополнительной обработки также являются недостатками этого способа изготовления панелей.

    Преимущества изготовления панелей литьем состоят в возможности получения больших по размерам панелей с требуемым, силовым набором, тонкой обшивкой и необходимым с точки зрения прочности изменением площади сечений по длине. К достоинствам этого способа изготовления панелей следует отнести также малый отход материала, значительно большую производительность труда и малую трудоемкость изготовления оснастки. Основной недостаток литых панелей — худшие механические характеристики.